Skip to main content
Log in

Criteria for release of genetically-improved phytoseiids: an examination of the risks associated with release of biological control agents

  • Published:
Experimental & Applied Acarology Aims and scope Submit manuscript

Abstract

Biological control of agricultural pests by phytoseiid predators has been achieved through classical introductions, conservation of indigenous and established foreign species, and augmentation of both introduced and indigenous species. Laboratory selection of phytoseiids has produced several strains that have been mass reared and released for pest management programs in glasshouses and agricultural cropping systems. Concerns over risks of classical biological control have developed recently. The development of recombinant DNA (rDNA) techniques for the genetic manipulation of crops and microorganisms also has inaugurated a debate on the safety of releasing transgenic organisms into the environment. This debate will extend to the release of phytoseiids that have been manipulated with rDNA techniques. Risks associated with releasing phytoseiids for augmentation or classical biological control programs are minimal and the benefits are great. Research initiated to answer questions about the risks of releasing transgenic phytoseiids into the environment provides opportunities to expand our understanding of the ecological impact of phytoseiids in agricultural and natural environments and could lead to improved pest management tactics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldhous, P., 1990. Moths provide a model. Nature, 347: 115.

    Google Scholar 

  • Australia, 1984. Biological Control Act 1984. No. 139 of 1984, Ca no. 84 83955, Canberra, ACT, Australia, 25 pp.

  • Australia, 1987. Procedures for assessment of the planned release of recombinant DNA organisms. Recombinant DNA Monitoring Committee, Dept. Industry, Technology and Commerce, Canberra ACT 2600.

  • Avella, M., Fournier, D., Pralavorio, M. and Berge, J., 1985. Selection pour la resistence à la deltamethrine d'une souche dePhytoseiulus persimilis Athias-Henriot. Agronomie, 5: 177–180.

    Google Scholar 

  • Beckendorf, S.K. and Hoy, M.A., 1985. Genetic improvement of arthropod natural enemies through selection, hybridization or genetic engineering techniques. In: M.A. Hoy and D.C. Herzog (Editors), Biological Control in Agricultural IPM Systems. Academic Press, Orlando, FL, pp. 167–187.

    Google Scholar 

  • Boller, E.F., 1987. A closer look at the question of pesticide resistant antagonists. Profile no. 6, WPRS Council, Intern. Organ. Biological and Integrated Control of Noxious Animals and Plants.

  • Bruce-Oliver, S.J. and Hoy, M.A., 1990. Effect of prey stages on life table attributes of a genetically-manipulated strain ofMetaseiulus occidentalis (Nesbitt) (Acari: Phytoseiidae). Exp. Appl. Acarol., 9: 201–217.

    Google Scholar 

  • Caltagirone, L.E., 1970. Overwintering sites forMetaseiulus occidentalis in peach orchards. J. Econ. Entomol., 63: 340–342.

    Google Scholar 

  • Caltagirone, L.E. and Huffaker, C.B., 1980. Benefits and risks of using predators and parasites for controlling pests. In: B. Lundholm and M. Stackerus (Editors), Environmental Protection and Biological Forms of Control of Pest Organisms. Ecol. Bull. (Stockholm), 31: 103–109.

  • Crampton, J., Morris, A., Lycett, G., Warren, A. and Eggleston, P., 1990. Transgenic mosquitoes: a future vector control strategy? Parasitol. Today, 6(2): 31–36.

    Google Scholar 

  • Croft, B.A., 1970. Comparative studies on four strains ofTyphlodromus occidentalis (Acarina: Phytoseiidae). I. Hybridization and reproductive isolation studies. Ann. Entomol. Soc. Am., 63: 1558–1563.

    Google Scholar 

  • Croft, B.A., 1971. Comparative studies on four strains ofTyphlodromus occidentalis (Acarina: Phytoseiidae). V. Photoperiodic induction of diapause. Ann. Entomol. Soc. Am., 64: 962–964.

    Google Scholar 

  • Croft, B.A., 1976. Establishing insecticide-resistant phytoseiid mites in deciduous tree fruit orchards. Entomophaga, 21: 383–399.

    Google Scholar 

  • Croft, B.A. and Hoying, S.A., 1975. Carbaryl resistance in native and released populations ofAmblyseius fallacis. Environ. Entomol., 4: 895–898.

    Google Scholar 

  • Croft, B.A. and Strickler, K.A., 1983. Natural enemy resistance to pesticides: documentation, characterization, theory and application. In: G.P. Georghiou and T. Saito (Editors), Pest Resistance to Pesticides. Plenum, New York, pp. 669–702.

    Google Scholar 

  • DeBach, P., 1964. Biological Control of Insect Pests and Weeds, Reinhold, Publ., New York, NY, 844 pp.

    Google Scholar 

  • de Moraes, G.J., McMurtry, J.A. and Denmark, H.A., 1986. A catalog of the mite family Phytoseiidae. Embrapa, Brasilia.

    Google Scholar 

  • Du, T., Xiong, J. and Huang, M., 1987. Observation on bionomics of phosmet-resistant strain inAmblyseius nicholsi Ehara et Lee. Natural Enemies of Insects, 9(3): 173–176 (in Chinese).

    Google Scholar 

  • Dunley, J.E. and Croft, B.A., 1990. Dispersal between and colonization of apple byMetaseiulus occidentalis andTyphlodromus pyri (Acarina: Phytoseiidae). Exp. Appl. Acarol., 10: 137–149.

    Google Scholar 

  • Eggleston, P., 1991. The control of insect-borne disease through recombinant DNA technology. Heredity, 66: 161–172.

    Google Scholar 

  • Ehler, L.E., 1990. Environmental impact of introduced biological-control agents: implications for agricultural biotechnology. In: J.J. Marois and G. Bruyening (Editors), Risk Assessment in Agricultural Biotechnology, Proc. of the Int. Conf. Univ. Calif., Div. Agric. Natural Res. Publ. No. 1928, pp. 85–96.

  • Ehler, L.E., 1991. Planned introductions in biological control. In: L.R. Ginzburg (Editor), Assessing Ecological Risks of Biotechnology. Butterworth-Heinemann, Boston, pp. 21–39.

    Google Scholar 

  • ESCOP, 1990. Biological control: an untapped natural resource. Introducing a national biological control initiative. Working Group on Biological Control, Experiment Station Committee on Organization and Policy, Purdue University, Lafayette, Indiana, 8 pp.

    Google Scholar 

  • Field, R.P. and Hoy, M.A., 1985. Diapause behavior of genetically-improved strains of the spider mite predatorMetaseiulus occidentalis (Acarina: Phytoseiidae). Entomol. Exp. Appl., 38: 112–120.

    Google Scholar 

  • Field, R.P. and Hoy, M.A., 1986. Evaluation of genetically improved strains ofMetaseiulus occidentalis (Nesbitt) (Acarina: Phytoseiidae) for integrated control of spider mites on roses in greenhouses. Hilgardia, 54: 1–32.

    Google Scholar 

  • Finnegan, D.J., 1990. Transposable elements and DNA transposition in eukaryotes. Curr. Opinion Cell Biol., 2: 471–477.

    Google Scholar 

  • Flaherty, D.L. and Huffaker, C.B., 1970. Biological control of Pacific mites and Willamette mites in San Joaquin Valley vineyards. I. Role ofMetaseiulus occidentalis. II. Influence of dispersion patterns ofMetaseiulus occidentalis. Hilgardia, 40: 267–330.

    Google Scholar 

  • Fournier, D., Pralavorio, M., Trottin-Caudal, Y., Coulon, J. Malezieux, S. and Berge, J.B., 1987. Selection artificielle pour la résistance au methidathion chezPhytoseiulus persimilis A. H. Entomophaga, 32: 209–219.

    Google Scholar 

  • Fox, J.L., 1988. Biotechnology alfresco. Bioscience, 38: 533–537.

    Google Scholar 

  • Freudenburg, W.R., 1988. Perceived risk, real risk: Social Science and the art of probabilistic risk assessment. Science, 242: 44–49.

    Google Scholar 

  • Friese, D.D. and Gilstrap, F.E., 1982. Influence of prey availability on reproduction and prey consumption ofPhytoseiulus persimilis, Amblyseius californicus, andMetaseiulus occidentalis (Acarina: Phytoseiidae). Int. J. Acarol., 8: 85–89.

    Google Scholar 

  • Funasaki, G.Y., Lai, P.Y., Nakahara, L.M., Beardsley, J.W., and Ota, A.K., 1988. A review of biological control introductions in Hawaii: 1890 to 1985. Proc. Hawaiian Entomol. Soc., 28: 105–160.

    Google Scholar 

  • Galas, D.J., 1990. Transposable elements: agents of complex change. In: M.L. Mendelsohn and R.J. Albertini (Editors), Mutation and the Environment, Part A. Wiley-Liss, New York, pp. 135–144.

    Google Scholar 

  • Ginzburg, R.L., (Editor), 1991. Assessing Ecological Risks of Biotechnology. Butterworth-Heinemann, Boston, 379 pp.

    Google Scholar 

  • Goldburg, R., Rissler, J., Shand, H. and Hassebrook, C., 1990. Biotechnology's bitter harvest. Herbicide-tolerant crops and the threat to sustainable agriculture. Report of the Biotechnology Working Group, 73 pp.

  • Hamamura, T., 1987. Biological control of the Kanzawa spider mite,Tetranychus kanzawa Kishida, in tea fields by the predacious mite,Amblyseius longispinosus (Evans), which is resistant to chemicals (Acarina; Tetranychidae, Phytoseiidae). JARQ, 21: 109–116.

    Google Scholar 

  • Harris, P., 1985. Biocontrol and the law. Bull. Entomol. Soc. Can., 17(1): 1–2.

    Google Scholar 

  • Headley, J.C. and Hoy, M.A., 1987. Benefit/cost analysis of an integrated mite management program for almonds. J. Econ. Entomol., 80: 555–559.

    Google Scholar 

  • Helle, W. and Sabelis, M.W. (Editors), 1985. Spider Mites, Their Biology, Natural Enemies and Control, Vol. 1A and 1B. Elsevier, Amsterdam, 405–458 pp.

    Google Scholar 

  • Howarth, F.G., 1983. Classical biocontrol: panacea or Pandora's box. Proc. Hawaiian Entomol. Soc., 24: 239–244.

    Google Scholar 

  • Howarth, F.G., 1991. Environmental impacts of classical biology control. Ann. Rev. Entomol., 36: 485–509.

    Google Scholar 

  • Hoy, M.A., 1979. Parahaploidy of the “arrhenotokous” predator,Metaseiulus occidentalis (Acarina: Phytoseiidae) demonstrated by X-irradiation of males. Entomol. Exp. Appl., 26: 97–104.

    Google Scholar 

  • Hoy, M.A., 1982. Aerial dispersal and field efficacy of a genetically-improved strain of the spider mite predatorMetaseiulus occidentalis, Acarina: Phytoseiidae. Entomol. Exp. Appl., 32: 205–212.

    Google Scholar 

  • Hoy, M.A., 1984. Genetic improvement of a biological control agent: multiple pesticide resistances and nondiapause inMetaseiulus occidentalis (Nesbitt). In: D.A. Griffiths and C.E. Bowman (Editors), Acarology VI, Vol. 2. Ellis Horwood, Chichester, pp. 673–679.

    Google Scholar 

  • Hoy, M.A., 1985a. Almonds (California): Integrated mite management for California almond orchards. In: W. Helle and M.W. Sabelis (Editors), Spider Mites, Their Biology, Natural Enemies and Control, Vol. 1B. Elsevier, Amsterdam, pp. 299–310.

    Google Scholar 

  • Hoy, M.A., 1985b. Recent advances in genetics and genetic improvement of the Phytoseiidae. Ann. Rev. Entomol., 30: 345–370.

    Google Scholar 

  • Hoy, M.A., 1990a. Commentary: The importance of biological control in U.S. Agriculture. J. Sustainable Agric., 1(1): 59–79.

    Google Scholar 

  • Hoy, M.A., 1990b. Genetic improvement of arthropod natural enemies: becoming a conventional tactic? In: R.R. Baker and P.E. Dunn (Editors), New Directions in Biological Control: Alternatives for Suppressing Agricultural Pests and Diseases. Alan R. Liss, New York, NY, pp. 405–417.

    Google Scholar 

  • Hoy, M.A. and Cave, F.E., 1985a. Laboratory evaluation of avermectin as a selective acaricide for use withMetaseiulus occidentalis (Nesbitt) (Acarina: Phytoseiidae). Exp. Appl. Acarol., 1: 139–152.

    Google Scholar 

  • Hoy, M.A. and Cave, F.E., 1985b. Mating behavior in four strains ofMetaseiulus occidentalis (Acari: Phytoseiidae). Ann. Entomol. Soc. Am., 78: 588–593.

    Google Scholar 

  • Hoy, M.A. and Cave, F.E., 1988. Premating and postmating isolation among populations ofMetaseiulus occidentalis (Nesbitt) (Acarina: Phytoseiidae). Hilgardia, 56(6): 1–20.

    Google Scholar 

  • Hoy, M.A. and Conley, J., 1987. Toxicity of pesticides to western predatory mite. Calif. Agric., 41(7/8): 12–14.

    Google Scholar 

  • Hoy, M.A. and Flaherty, D.L., 1970. Photoperiodic induction of diapause in a predacious mite,Metaseiulus occidentalis. Ann. Entomol. Soc. Am., 63: 960–963.

    Google Scholar 

  • Hoy, M.A. and Flaherty, D.L., 1975. Diapause induction and duration in vineyard-collectedMetaseiulus occidentalis. Environ. Entomol., 4: 262–264.

    Google Scholar 

  • Hoy, M.A. and Knop. N.F., 1979. Studies on pesticide resistance in the phytoseiidMetaseiulus occidentalis in California. In: J. Rodriguez (Editor), Recent Advances in Acarology, Vol. 1. Academic Press, New York, NY, pp. 89–94.

    Google Scholar 

  • Hoy, M.A. and Knop, N.F., 1981. Selection for and genetic analysis of permethrin resistance inMetaseiulus occidentalis: genetic improvement of a biological control agent. Entomol. Exp. Appl., 30: 10–18.

    Google Scholar 

  • Hoy, M.A. and Ouyang, Y.L., 1989. Selection of the western predatory mite,Metaseiulus occidentalis (Acari: Phytoseiidae), for resistance to abamectin. J. Econ. Entomol., 82: 35–40.

    Google Scholar 

  • Hoy, M.A. and Smilanick, J.M., 1979. A sex pheromone produced by immature and adult females of the predatory mite,Metaseiulus occidentalis, Acarina: Phytoseiidae. Entomol. Exp. Appl., 26: 291–300.

    Google Scholar 

  • Hoy, M.A. and Smilanick, J.M., 1981. Non-random prey location by the phytoseiid predatorMetaseiulus occidentalis: differential responses to several spider mite species. Entomol. Exp. Appl. 29: 241–253.

    Google Scholar 

  • Hoy, M.A., Barnett, W.M., Reil, W.O., Castro, D., Cahn, D., Hendricks, L., Coviello, R. and Bentley, W. 1982. Large scale releases of pesticide-resistant spider mite predators. Calif. Agric., 26(1/2): 8–10.

    Google Scholar 

  • Hoy, M.A., Groot, J.R. and van de Baan, H.E., 1985. Influence of aerial dispersal on persistence and spread of pesticide-resistantMetaseiulus occidentalis in California almond orchards. Entomol. Exp. Appl., 37: 17–31.

    Google Scholar 

  • Hoying, S.A. and Croft, B.A., 1977. Comparisons between populations ofTyphlodromus longipilus Nesbitt andT. occidentalis Nesbitt: taxonomy, distribution, and hybridization. Ann. Entomol. Soc. Am., 70: 150–159.

    Google Scholar 

  • Hoyt, S.C., 1969. Integrated chemical control of insects and biological control of mites on apple in Washington. J. Econ. Entomol., 62: 74–86.

    Google Scholar 

  • Huang, M., Xiong, J. and Du, T., 1987. The selection for and genetical analysis of phosmet resistance inAmblyseius nicholsi. Acta Entomol. Sinica, 30(2): 133–139.

    Google Scholar 

  • Huffaker, C.B., van de Vrie, M. and McMurtry, J.A., 1970. Ecology of tetranychid mites and their natural enemies: A review. II. Tetranychid populations and their possible control by predators: an evaluation. Hilgardia, 40(11): 334–458.

    Google Scholar 

  • Innis, M.A., Gelfand, D.H., Sninsky, J.J. and White, T.J. (Editors), 1990. PCR Protocols, a Guide to Methods and Applications, Academic Press, San Diego, CA, 482 pp.

    Google Scholar 

  • Johnson, D.T. and Croft, B.A., 1976. Laboratory study of the dispersal behavior ofAmblyseius fallacis (Acarina: Phytoseiidae). Ann. Entomol. Soc. Am., 69: 1019–1023.

    Google Scholar 

  • Johnson, D.T. and Croft, B.A., 1981. Dispersal ofAmblyseius fallacis (Acarina: Phytoseiidae) in an apple ecosystem. Environ. Entomol., 10: 313–319.

    Google Scholar 

  • Ke, L.S., Yang, Y.Y. and Xin, J.L., 1990. Selection for and genetic analysis of dimethoate resistance inAmblyseius pseudolongispinosus. Acta Entomol. Sinica, 33: 393–397 (in Chinese).

    Google Scholar 

  • Konig, K. and Hassan, S.A., 1986. Resistenze und Kreuzresistenz der RaubmilbePhytoseiulus persimilils (Athias-Henriot) gegenüber organischen Phosphorsäurestern. J. Appl. Entomol., 101: 206–215.

    Google Scholar 

  • Lai, P.-Y., 1988. Biological control: A positive point of view. Proc. Hawaiian Entomol. Soc., 28: 179–190.

    Google Scholar 

  • Laing, J.E., 1969. Life history and life table ofMetaseiulus occidentalis. Ann. Entomol. Soc. Am., 62: 978–982.

    Google Scholar 

  • Laing, J.E. and Osborn, J.A.L., 1974. The effect of prey density on the functional and numerical responses of three species of predatory mites. Entomophaga, 19: 267–277.

    Google Scholar 

  • Lee, M.S. and Davis, D.W., 1968. Life history and behavior of the predatory miteTyphlodromus occidentalis in Utah. Ann. Entomol. Soc. Am., 61: 251–255.

    Google Scholar 

  • Legner, E.F., 1986. Risk categories of biological control organisms. Proc. 53rd Annual Conf. California Mosquito and Vector Control Assoc., pp. 79–82.

  • Levin, M. and Strauss, H. (Editors), 1991. Risk Assessment in Genetic Engineering. McGraw-Hill, New York, NY, 403 pp.

    Google Scholar 

  • Logan, S.H., Carter, H.O. and Lohr, L., 1987. Agricultural policy implications of biotechnology. Calif. Agric., 41 (7–8): 20–21.

    Google Scholar 

  • Longworth, J.F., 1987. Biological control in New Zealand: policy and procedures. N.Z. Entomol., 10: 1–7.

    Google Scholar 

  • Luck, R.F., Shepard, B.M. and Kenmore, P.E., 1988. Experimental methods for evaluating arthropod natural enemies. Ann. Rev. Entomol., 33: 367–391.

    Google Scholar 

  • Mangini, A.C., Jr. and Hain, F.P., 1991. Vapor deficit differentially affects laboratory populations ofMetaseiulus occidentalis andNeoseiulus fallacis (Acarina: Phytoseiidae) reared together. Environ. Entomol., 20: 823–831.

    Google Scholar 

  • Markwick, N.G., 1986. Detecting variability and selecting for pesticide resistance in two species of phytoseiid mites. Entomophaga, 31: 225–236.

    Google Scholar 

  • Markwick, N.P., Wearing, C.H. and Shaw, P.W., 1990. Pyrethroid insecticides for apple pest control: 1. Development of pyrethroid-resistant predatory mites. In: A.J. Popay (Editor), Proc. 43rd N.Z. Weed and Pest Control Conf. N.Z. Weed and Pest Control Society, Palmerston North, pp. 296–300.

  • McMurtry, J.A., 1982. The use of phytoseiids for biological control: progress and future prospects. In: M.A. Hoy (Editor), Recent Advances in Knowledge of the Phytoseiidae. Div. Agric. Sci., Univ. California, Berkeley, Publ. 3284, pp. 23–48.

    Google Scholar 

  • McMurtry, J.A., 1983, Phytoseiid predators in orchard systems: A classical biological control success story. In: M.A. Hoy, G.L. Cunningham and L. Knutson (Editors), Biological Control of Pests by Mites. Div. Agric. Sci., Univ. California, Berkeley, Publ. 3304, pp. 21–26.

    Google Scholar 

  • McMurtry, J.A., Huffaker, C.B. and van de Vrie, M., 1970. Ecology of tetranychid mites and their natural enemies: A review. I. Tetranychid enemies: their biological characters and the impact of spray practices. Hilgardia, 40 (11): 331–390.

    Google Scholar 

  • Miller, H.I., Burris, R.H., Vidaver, A.K. and Wivel, W.A., 1990. Risk-based oversight of experiments in the environment. Science, 250: 490–491.

    Google Scholar 

  • Mooney, H.A. and Bernardi, G. (Editors), 1990. Introduction of Genetically Modified Organisms into the Environment. SCOPE 44, Wiley, New York, NY, 290 pp.

    Google Scholar 

  • New Zealand Ministry for the Environment, 1988. New Organisms in New Zealand. Procedures and Legislation for the Importation of New Organisms into New Zealand and the Development, Field Testing and Release of Genetically Modified Organisms. A Discussion Document. Ministry of the Environment, Wellington, New Zealand, 59 pp.

    Google Scholar 

  • Parsons, P.A., 1990. Risks from genetically engineered organisms: energetics and environmental stress. Functional Ecol., 4: 265–271.

    Google Scholar 

  • Penman, D.R. and Chapman, R.B., 1980. Effect of temperature and humidity on the locomotory activity ofTetranychus urticae (Acarina: Tetranychidae),Typhlodromus occidentalis andAmblyseius fallacis (Acarina: Phytoseiidae). Acta Oecologia Oecol. Applic., 1: 259–264.

    Google Scholar 

  • Petrushov, A.Z., 1990. Genetic and biochemical mechanisms of Ambush resistance inMetaseiulus occidentalis (Acarina: Phytoseiidae). VIII Int. Congress of Acarology, Česke Budejovice, Czechoslovakia, 6–11 Aug. 1990 (Abstract).

  • Phillips, J.P., Xin, J.H., Kirby, K., Milne, Jr., C.P., Krell, P. and Wild, J.R., 1990. Transfer and expression of an organophosphate insecticide-degrading gene fromPseudomonas inDrosophila melanogaster. Proc. Natl. Acad. Sci. USA, 87: 8155–8159.

    Google Scholar 

  • Pimentel, D., 1980. Environmental risks associated with biological controls. In: B. Lundholm and M. Stackerud (Editors), Environmental Protection and Biological Forms of Control of Pest Organisms. Ecol. Bull., (Stockholm), 31: 11–24.

  • Price, P.W., 1972. Methods of sampling and analysis for predictive results in the introduction of entomophagous insects. Entomophaga, 17: 211–222.

    Google Scholar 

  • Pruszynski, S. and Cone, W.W., 1973. Biological observations ofTyphlodromus occidentalis (Acarina: Phytoseiidae) on hops. Ann. Entomol. Soc. Am., 66: 47–51.

    Google Scholar 

  • Purchase, H.G. and Mackenzie, D.R. (Editors), 1990. Agricultural Biotechnology, Introduction to Field Testing. Office of Agricultural Biotechnology, U.S. Department of Agriculture, Washington, DC, 58 pp.

    Google Scholar 

  • Rabbinge, R. and Hoy, M.A., 1980. A population model for two-spotted spider miteTetranychus urticae and its predatorMetaseiulus occidentalis. Entomol. Exp. Appl., 28: 64–81.

    Google Scholar 

  • Rosen, D., 1988. Another look at pesticide-resistant natural enemies, Profile No. 7, WPRS Council, Int. Org. Biological and Integrated Control of Noxious Animals and Plants.

  • Roush, R.T. and Hoy, M.A., 1981a. Genetic improvement ofMetaseiulus occidentalis: selection with methomyl, dimethoate, and carbaryl and genetic analysis of carbaryl resistance. J. Econ. Entomol., 74: 138–141.

    Google Scholar 

  • Roush, R.T. and Hoy, M.A., 1981b. Laboratory, glasshouse, and field studies of artificially selected carbaryl resistance inMetaseiulus occidentalis. J. Econ. Entomol., 74: 142–147.

    Google Scholar 

  • Roush, R.T., Peacock, W.L., Flaherty, D.L. and Hoy, M.A., 1980. Dimethoate-resistant spider mite predator survives field tests. Calif. Agric., 34: 12–13.

    Google Scholar 

  • Sabelis, M.W. and Dicke, M., 1985. Long-range dispersal and searching behaviour. In: W. Helle and M.W. Sabelis (Editors), Spider Mites, Their Biology, Natural Enemies and Control, Vol. 1B. Elsevier, Amsterdam, pp. 141–160.

    Google Scholar 

  • Samways, M.J., 1988. Classical biological control and insect conservation: are they compatible? Environ. Conserv., 15 (4): 349–354.

    Google Scholar 

  • Schulten, G.G.M. and van de Klashorst, G., 1979. Genetics of resistance to parathion and demeton-s-methyl inPhytoseiulus persimilis A.-H. (Acari: Phytoseiidae). In: E. Piffl (Editor), Proc. Fourth Int. Congr. Acarol., 1974. Akademiai Kiado, Budapest, pp. 519–524.

    Google Scholar 

  • Strickler, K.A. and Croft, B.A., 1982. Selection for permethrin resistance in the predatory miteAmblyseius fallacis. Entomol. Exp. Appl., 31: 339–345.

    Google Scholar 

  • Sutherst, R.W. and Maywald, G.F., 1985. A computerized system for matching climates in ecology. Agric. Ecosys. Environ., 13: 281–299.

    Google Scholar 

  • Tanigoshi, L.K., 1982. Advances in knowledge of the Phytoseiidae. In: M.A. Hoy (Editor), Recent Advances in Knowledge of the Phytoseiidae. Div. Agricult. Sci., Univ. Calif. Publ. 3284, Berkeley, pp. 1–22.

  • Tanigoshi, L.K., Hoyt, S.C., Browne, R.W. and Logan, J.A., 1975. Influence of temperature on population increase ofMetaseiulus occidentalis (Acarina: Phytoseiidae). Ann. Entomol. Soc. Am., 68: 979–986.

    Google Scholar 

  • Tiedje, J.M., Colwell, R.K., Grossman, Y.L., Hodson, R.E., Lenski, R.E., Mack, R.M. and Regal, P.J., 1989. The planned introduction of genetically engineered organisms: ecological considerations and recommendations. Ecology, 70: 298–315.

    Google Scholar 

  • U.S. Department of Agriculture, 1991. Part III. Proposed guidelines for research involving the planned introduction into the environment of organisms with deliberately modified hereditary traits; Notice. Federal register Vol. 56 (22), Friday, February 1, 1991, pp. 4134–4151.

  • Van Lenteren, J.C., 1980. Evaluation of control capabilities of natural enemies: does art have to become science? Netherlands J. Zool., 30(2): 369–381.

    Google Scholar 

  • Voroshilov, N.V., 1979. Heat-resistant lines of the mitePhytoseiulus persimilis A.-H. Genetika, 15(1): 70–76.

    Google Scholar 

  • Voroshilov, N.V. and Kolmakova, L.I., 1977. Heritability of fertility in a hybrid population ofPhytoseiulus. Genetika, 13 (8): 1495–1496.

    Google Scholar 

  • Waage, J.K. and Greathead, D.J., 1988. Biological control: challenges and opportunities. Phil. Trans. R. Soc. London, Ser. B, 318: 111–128.

    Google Scholar 

  • Walker, J.T.S., Markwick, N.P., Wearing, C.H., Shaw, P.W. and White, V., 1990. Pyrethroid insecticides for apple pest control: II. Field evaluation of mite and insect control. In: A.J. Popay (Editor), Proc. 43rd N.Z. Weed and Pest Control Conf. N.Z. Weed and Pest Control Society, Palmerston North, pp. 301–305.

  • Whalon, M.E., Croft, B.A. and Mowry, T.M., 1982. Introduction and survival of susceptible and pyrethroid-resistant strains ofAmblyseius fallacis (Acari: Phytoseiidae) in a Michigan apple orchard. Environ. Entomol., 11: 1096–1099.

    Google Scholar 

  • Wilson, F., 1965. Biological control and the genetics of colonizing species. In: H.G. Baker and G.L. Stebbins (Editors), The Genetics of Colonizing Species. Academic Press, New York, NY, pp. 307–329.

    Google Scholar 

  • Wilson, R. and Crouch, E.A.C., 1987. Risk assessment and comparisons: an introduction, Science, 236: 267–270.

    Google Scholar 

  • Wilson, L.T., Hoy, M.A., Zalom, F.G. and Smilanick, J.M.,1984. Sampling mites in almonds: I. Within-tree distribution and clumping patterns of mites with comments on predator-prey interactions. Hilgardia, 52(7): 1–13.

    Google Scholar 

  • Worner, S.P., 1988. Ecoclimatic assessment of potential establishment of exotic pests. J. Econ. Entomol., 81: 973–983.

    Google Scholar 

  • Zalom, F.G., Hoy, M.A., Wilson, L.T. and Barnett, W.W., 1984. II. Presence-absence sequential sampling forTetranychus mite species. Hilgardia, 52 (7): 14–24.

    Google Scholar 

  • Zeckhauser, R.J. and Viscusi, W.K., 1990. Risk within reason. Science, 248: 559–564.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoy, M.A. Criteria for release of genetically-improved phytoseiids: an examination of the risks associated with release of biological control agents. Exp Appl Acarol 14, 393–416 (1992). https://doi.org/10.1007/BF01200576

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01200576

Keywords

Navigation