Skip to main content
Log in

Transtrophic interactions in cassava

  • Published:
Experimental & Applied Acarology Aims and scope Submit manuscript

Abstract

Cassava plants exude phloem saps at the base of the petioles of the youngest leaves. The effect of these nutrient-rich droplets on the interaction between the predatory miteTyphlodromalus limonicus and the herbivorous miteMononychellus tanajoa was investigated in a semi-field setting. These two organisms were chosen as a model system due to their strong association with cassava. The hypothesis that exudate production can be considered in terms of extrinsic defense was tested experimentally. Because non-producing clones could not be found exudate production was mimicked (or not) by applying honey droplets on the petioles of plants from which exuding plant parts were aborted. The experiments indicated that: (1) The presence of exudate on otherwise clean plants does not prevent extinction of the predator population, but the rate of population decrease is consistently lower than when no exudate is present. (2) When a second food source enables the predators to reproduce, higher population densities are always attained when the sugar source is also present. (3) Higher predator numbers invariably coincide with lower herbivore abundance. (4) Lower prey abundance does not lead to a reduction in egg production when honey is present. (5) Presence of honey leads to enhanced juvenile/adult survival or reduced emigration and thus to a higher number of female predators.

In interpreting the results careful attention was paid to the effect of cassava mildew because spores of this fungus were shown to be an adequate food alternative for the predator under study. The presence of this mildew (Oidium manihoti) hampered straightforward interpretation of some experiments but left the main conclusions unaltered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • André, M., 1939. Sur les acarodomaties. Rev. Bot. Appl., 220: 835–847.

    Google Scholar 

  • Badii, M.H. and McMurtry, J.A., 1983. Effect of different foods on development, reproduction and survival ofPhytoseiulus longipes [Acarina: Phytoseiidae]. Entomophaga, 28: 161–166.

    Google Scholar 

  • Bakker, F.M. and Klein, M.E., 1990. The significance of cassava exudate for predaceous mites. Symp. Biol. Hung., 39: 437–439.

    Google Scholar 

  • Bakker, F.M. and Oduor, G.I., 1991. How plants maintain body-guards: plant exudate as a food source for phytoseiid mites. In: R. Schuster and P.W. Murphy (Editors), The Acari, Reproduction, Development and Life History Strategies. Chapman-Hall, London, pp. 325.

    Google Scholar 

  • Bellotti, A.C., Mesa, N.C., Serrano, M., Guerrero, J.M. and Herrera, C.J., 1987. Taxonomic inventory and survey activity for natural enemies of cassava green mites in the Americas. Insect Sci. Appl., 8: 845–849.

    Google Scholar 

  • Belt, T., 1874. The Naturalist in Nicaragua. Murray, London.

    Google Scholar 

  • Bentley, B.L., 1976. Plants bearing extrafloral nectaries and the associated ant community: interhabitat differences in the reduction of herbivore damage. Ecology, 57: 815–820.

    Google Scholar 

  • Bentley, B.L., 1977a. Extrafloral nectaries and protection by pugnacious bodyguards. Ann. Rev. Ecol. Syst., 8: 407–427.

    Google Scholar 

  • Bentley, B.L., 1977b. The protective function of ants visiting the extrafloral nectaries ofBixa orellana (Bixaceae). J. Ecol., 65: 27–38.

    Google Scholar 

  • Braun, A.R., Mesa, N.C. and Bellotti, A.C., 1988. Life table analysis of tritrophic interactions: cassava,Mononychellus progresivus andTyphlodromalus limonicus. Proc. Brighton Crop Protection Conference, Vol. 9c(3): 1131–1135.

    Google Scholar 

  • Chant, D.A., 1959. Phytoseiid mites (Acarina: Phytoseiidae). Part I. Bionomics of seven species in southeastern England. Part II. A taxonomic review of the family Phytoseiidae, with descriptions of thirty-eight new species. Can. Entomol., 91, Suppl. 12, 166 pp.

  • Chant, D.A. and Fleschner, C.A., 1960. Some observations on the ecology of phytoseiid mites (Acarina: Phytoseiidae) in California. Entomophaga, 5: 131–139.

    Google Scholar 

  • Compton, S.G. and Robertson, H.G., 1988. Complex interactions between mutualisms: ants tending homopterans protect fig seeds and pollinators. Ecology, 69: 1302–1305.

    Google Scholar 

  • de Moraes, G.J. and McMurtry, J.A., 1983. Phytoseiid mites (Acarina) from Northeastern Brazil with descriptions of four new species. Int. J. Acarol., 9: 131–148.

    Google Scholar 

  • de Moraes, G.J. and Mesa, N.C., 1988. Mites of the family Phytoseiidae (Acari) in Colombia, with descriptions of three new species. Int. J. Acarol., 14: 71–88.

    Google Scholar 

  • de Moraes, G.J., Denmark, H.A. and Guerrero, J.M., 1982. Phytoseiid mites of Colombia. Int. J. Acarol., 8: 15–22.

    Google Scholar 

  • de Moraes, G.J., Mesa, N.C. and Reyes, J.A., 1988. Some phytoseiid mites from Paraguay with description of a new species. Int. J. Acarol., 14: 221–223.

    Google Scholar 

  • de Moraes, G.J., Mesa, N.C. and Braun, A., 1991. Some phytoseiid mites of Latin America (Acari: Phytoseiidae). Int. J. Acarol., 17: 117–139.

    Google Scholar 

  • Dicke, M. and Sabelis, M.W., 1988. How plants obtain predatory mites as bodyguards. Neth. J. Zool., 38: 148–165.

    Google Scholar 

  • Dreisig, H., 1988. Foraging rate of ants collecting honeydew or extrafloral nectar, and some possible constrains. Ecol. Entomol., 13: 143–154.

    Google Scholar 

  • El-Banhawy, E.M., 1975. Biology and feeding behaviour of the predatory mite,Amblyseius brazilii (Mesostigmata: Phytoseiidae). Entomophaga, 20: 353–360.

    Google Scholar 

  • Ferragut, F., Garcia-Mari, F., Costa-Comelles, J. and Laborda, R., 1987. Influence of food and temperature on development and oviposition ofEuseius stipulatus andTyphlodromalus phialatus (Acarina: Phytoseiidae). Exp. Appl. Acarol., 3: 317–329.

    Google Scholar 

  • Hagen, K.S., 1986. Ecosystem analysis: Plant cultivars (HPR), entomophagous species and food supplements. In: D.J. Boethel and R.D. Eikenbary (Editors), Interactions of Plant Resistance and Parasitoids and Predators of Insects. John Wiley, New York, NY, pp. 151–197.

    Google Scholar 

  • Herren, H.R. and Neuenschwander, P., 1991. Biological control of cassava pests in Africa. Ann. Rev. Entomol., 36: 257–283.

    Google Scholar 

  • Hespenheide, H.A., 1985. Insect visitors to extrafloral nectaries ofByttneria aculeata (Sterculiaceae): relative importance and roles. Ecol. Entomol., 10: 191–204.

    Google Scholar 

  • Hölldobler, B. and Wilson, E.O., 1990. The Ants. Springer, Berlin, 732 pp.

    Google Scholar 

  • Hoy, M.A. and Smilanick, J.M., 1981. Non-random prey location by the phytoseiid predatorMetaseiulus occidentalis: differential responses to several spider mite species. Entomol. Exp. Appl., 29: 291–253.

    Google Scholar 

  • Huxley, C.R., 1986. Evolution of benevolent ant-plant relationships. In: B. Juniper and Sir R. Southwood (Editors), Insects and the Plant Surface. Edward Arnold, London, pp. 257–282.

    Google Scholar 

  • Inouye, D.W. and Taylor, O.R., 1977. An experimental investigation of a plant-ant-seed predator system from a high altitude temperate region. Ecology, 60: 1–7.

    Google Scholar 

  • Jacobs, M., 1966. On domatia: the viewpoints and some facts I. Academie van Wetenschappen Amsterdam, 69: 275–316.

    Google Scholar 

  • James, D.G., 1989. Influence of diet on development, survival and oviposition in an Australian phytoseiid,Amblyseius victoriensis (Acari: Phytoseiidae). Exp. Appl. Acarol., 6: 1–10.

    Google Scholar 

  • Janzen, D.H., 1966. Coevolution of mutualism between ants and acacias in Central America. Evolution, 20: 249–275.

    Google Scholar 

  • Keeler, K.H., 1981. A model of selection for facultative nonsymbiotic mutualism. Am. Nat., 118: 488–498.

    Google Scholar 

  • Keeler, K.H., 1985. Extrafloral nectaries on plants in communities without ants. Oikos, 44: 407–414.

    Google Scholar 

  • Knox, R.B., Marginson, R., Kenrick, J. and Beattie, A.J., 1986. The role of extrafloral nectaries inAcacia. B. Juniper and Sir R. Southwood (Editors), Insects and the Plant Surface. Edward Arnold, London, pp. 295–307.

    Google Scholar 

  • Koptur, S., 1979. Facultative mutualism between weedy vetches bearing extra-floral nectaries and weedy ants in California. Am. J. Bot., 66: 1016–1020.

    Google Scholar 

  • Koptur, S., 1985. Alternative defenses against herbivores inInga (Fabaceae: Mimosoideae) over an elevational gradient. Ecology, 66(5): 1639–1650.

    Google Scholar 

  • Koptur, S. and Lawton, J.H., 1988. Interactions among vetches bearing extrafloral nectaries, their biotic protective agents, and herbivores. Ecology, 69: 278–283

    Google Scholar 

  • Lundstroem, A.N., 1887. Pflanzenbiologische Studien II. Die Anpassung der Planzen an Tiere. Nova Acta Reg. Soc. Sc. Uppsala, 13: 1–88.

    Google Scholar 

  • McMurtry, J.A. and Scriven, G.T., 1964. Studies on the feeding, reproduction, and development ofAmblyseius hibisci (Acarina: Phtoseiidae) on various food substances. Ann. Entom. Soc. Am., 57: 649–655.

    Google Scholar 

  • McMurtry, J.A. and Scriven, G.T., 1965. Life-history studies ofAmblyseius limonicus with comparative observations onAmblyseius hibisci [Acarina: Phytoseiidae]. Ann. Entomol. Soc. Am., 58: 106–111.

    Google Scholar 

  • McMurtry, J.A. and Scriven, G.T., 1966. Effects of artificial foods on reproduction and development of four species of phytoseiid mites. Ann. Entomol. Soc. Am., 59: 267–269.

    Google Scholar 

  • Muma, M.H., 1971. Food habits of the Phytoseiidae (Acarina: Mesostigmata) including common species on Florida citrus. Fla. Entomol., 54: 21–34.

    Google Scholar 

  • O'Dowd, D.J. and Wilson, M.F., 1989. Leaf domatia and mites on Australian plants: ecological and evolutionary implications. Biol. J. Linn. Soc., 37: 191–236.

    Google Scholar 

  • O'Dowd, D.J. and Willson, M.F., 1991. Associations between mites and leaf domatia. Trends Ecol. Evol., 6(6): 179–182.

    Google Scholar 

  • Pemberton, R.W. and Turner, C.E., 1989. Occurrence of predatory and fungivorous mites in leaf domatia. Am. J. Bot., 76: 105–112.

    Google Scholar 

  • Pereira, J.F. and Splittstoesser, W.E., 1987. Exudate from cassava leaves. Agric. Ecosyst. Environ., 18: 191–194.

    Google Scholar 

  • Pereira, J.F. and Splittstoesser, W.E., 1990. Anatomy of the cassava leaf. Proc. Interam. Soc. Trop. Hort., 34: 73–78.

    Google Scholar 

  • Pickett, C.H. and Clark, W.D., 1979. The function of extrafloral nectaries inOpuntia acanthocarpa (Cactaceae). Am. J. Bot., 66: 618–625.

    Google Scholar 

  • Porres, M.A., McMurtry, J.A. and March, R.B., 1975. Investigations of leaf sap feeding by three species of phytoseiid mites by labelling with radioactive phosphoric acid (H3 32PO4). Ann. Entomol. Soc. Am., 68: 871–872.

    Google Scholar 

  • Price, P.W., 1986. Ecological aspects of host plant resistance and biological control: Interactions among three trophic levels. D.J. Boethel and R.D. Eikenbary (Editors), Interactions of Plant Resistance and Parasitoids and Predators of Insects. John Wiley, New York, NY, pp. 11–30.

    Google Scholar 

  • Pyke, G.H., 1991. What does it cost a plant to produce floral nectar? Nature, 350: 58–59.

    Google Scholar 

  • Ragusa, S. and Swirski, E., 1977. Feeding habits, post-embryonic and adult survival, mating, virility and fecundity of the predacious miteAmblyseius swirskii [Acarina: Phytoseiidae] on some coccids and mealybugs. Entomophaga, 22: 383–392.

    Google Scholar 

  • Sadasivam, K.V., 1970. On the composition of leaf exudate and leaf leachate of tapioca (Manihot utilissima Phol.) foliage. Sci. Culture, 36(11): 608–609.

    Google Scholar 

  • Salick, J., 1983. Natural history of crop-related wild species: uses in pest habitat management. Environ. Manage., 7: 85–90.

    Google Scholar 

  • Schemske, D.W., 1980. The evolutionarysignificance of extrafloral nectar production byCostus woodsonii (Zingiberaceae): an experimental analysis of ant protection. J. Ecol., 68: 959–967.

    Google Scholar 

  • Schuster, M.F., Lukefahr, M.J. and Maxwell, F.G., 1976. Impact of nectariless cotton on plant bugs and natural enemies. J. Econ. Entomol., 69: 400–402.

    Google Scholar 

  • Stephenson, A.G., 1982. The role of the extrafloral nectaries ofCatalpa speciosa in limiting herbivory and increasing fruit production. Ecology, 63: 663–669.

    Google Scholar 

  • Swirski, E. and Dorzia, N., 1968. Studies on the feeding, development and oviposition of the predaceous miteAmblyseius limonicus Garman and McGregor (Acarina: Phytoseiidae) on various kinds of food substances. Israel J. Agric. Res., 18: 71–75.

    Google Scholar 

  • Treacy, M.F., Benedict, J.H., Walmsley, M.H., Lopez, J.D. and Morrison, R.K., 1987. Parasitism of bollworm (Lepidoptera: Noctuidae) eggs on nectaried and nectariless cotton. Environ. Entomol., 16: 420–423.

    Google Scholar 

  • Yokoyama, V.Y., 1978. Relation of seasonal changes in extrafloral nectar and foliar protein and arthropod populations in cotton. Environ. Entomol., 7: 799–802.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakker, F.M., Klein, M.E. Transtrophic interactions in cassava. Exp Appl Acarol 14, 293–311 (1992). https://doi.org/10.1007/BF01200569

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01200569

Keywords

Navigation