Skip to main content
Log in

Dynamics ofPanonychus ulmi andTyphlodromus pyri: factors contributing to persistence

  • Published:
Experimental & Applied Acarology Aims and scope Submit manuscript

Abstract

We addressed the question of persistence of predator and prey in a biological control system by examining temporal patterns ofPanonychus ulmi (Koch) and its predator,Typhlodromus pyri Scheuten at two geographic locations and at two spatial scales. At the scale of an orchard, bothP. ulmi andT. pyri were persistent over the time frame of 6 years. At the scale of an individual tree,T. pyri appeared to be more persistent than its prey,P. ulmi. We used a simulation model of single populations ofP. ulmi andT. pyri to determine which of several aspects of the biology of the two species could contribute to such a pattern. Spatial incongruity between predator and prey was essential for persistence of both species. The generalist food habit ofT. pyri probably contributes to the persistence ofT. pyri on individual trees, and may cause occasional extinction ofP. ulmi at this spatial scale. The presence of alternate food is likely an essential element for successful biological control in this system. Cannibalism byT. pyri results in higher prey densities, that is, it is detrimental to the biological control ofP. ulmi, but has no effect on the relative persistence of the two species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beddington, J.R., Free, C.A. and Lawton, J.H., 1978. Modelling biological control: on the characteristics of successful natural enemies. Nature, 273: 513–519.

    Google Scholar 

  • Bohm, H., 1960, Untersuchungen uber Spinnmilbenfeinde in Österreich. Pflanzenschutz Berlin, Vienna, 25: 23–46.

    Google Scholar 

  • Calis, J.N.M., Overmeer, W.P.J. and van der Geest, L.P.S., 1988. Tydeids as alternative prey phytoseiid mites in apple orchards. Med. Fac. Landbouww. Rijks Univ. Gent, 53: 793–798.

    Google Scholar 

  • Chant, D.A., 1959. Phytoseiid mites (Acarina: Phytoseiidae). Part I. Bionomics of seven species in southeastern England. Can. Entomol., 91 (Suppl. 12): 1–44.

    Google Scholar 

  • Chant, D.A., 1961. An experiment in biological control ofTetranychus telarius (L.) (Acarina: Tetranychidae) in a greenhouse using the predacious mitePhytoseiulus persimilis Athias-Henriot (Phytoseiidae). Can. Entomol., 93: 437–443.

    Google Scholar 

  • Chung-lo, L., 1958. Monophagy versus polyphagy in the choice of entomophagous insects in biological control. In: Trans. First Int. Cong. Insect Pathology and Biol. Control, Praha, pp. 521–531.

  • Clements, D.R. and Harmsen, R., 1990. Predatory behaviour and prey-stage preferences of stigmaeid and phytoseiid mites and their potential compatibility in biological control. Can. Entomol., 122: 321–328.

    Google Scholar 

  • Collyer, E., 1964. The effect of an alternative food supply on the relationship between twoTyphlodromus species andPanonychus ulmi (Koch) (Acarina). Entomol. Exp. Appl., 7: 120–124.

    Google Scholar 

  • Collyer, E., 1980. Integrated control of apple pests in New Zealand. 16. Progress in integrated control of European red mite. N.Z.J. Zool., 7: 271–279.

    Google Scholar 

  • Cranham, J.E. and Solomon, M.G., 1981. Mite management in commercial apple orchards. Rep. East Malling Res. Stn., 1980: 171–172.

    Google Scholar 

  • den Boer, P.J., 1968: Spreading of risk and stabilization of animal numbers. Acta Biotheor., 18: 165–194.

    Google Scholar 

  • Dicke, M., 1988. Prey preference of the phytoseiid miteTyphlodromus pyri. 1. Response to volatile kairomones. Exp. Appl. Acarol., 4: 1–13.

    Google Scholar 

  • Dicke, M. and DeJong, M., 1988. Prey preference of the phytoseiid miteTyphlodromus pyri. 2. Electrophoretic diet analysis. Exp. Appl. Acarol., 4: 15–25.

    Google Scholar 

  • Dicke, M., Sabelis, M.W. and van den Berg, H., 1989. Does prey preference change as a result of prey species being presented together? Analysis of prey selection by the predatory miteTyphlodromus pyri (Acarina: Phytoseiidae). Oecologia, 81: 302–309.

    Google Scholar 

  • Dicke, M., Sabelis, M.W., deJong, M. and Alers, M.P.T., 1990. Do phytoseid mites select the best prey species in terms of reproductive success? Exp. Appl. Acarol., 8: 161–174.

    Google Scholar 

  • Diekmann, O., Metz, J.A. and Sabelis, M.W., 1988. Mathematical models of predator/prey/plant interactions in a patch environment. Exp. Appl. Acarol., 5: 319–342.

    Google Scholar 

  • Dosse, G., 1961. Über die Bedeutung der Pollenernahrung furTyphlodromus (T.) pyri Scheuten (=tiliae Oud.) (Acari, Phytoseiidae). Entomol. Exp. Appl., 4: 191–195.

    Google Scholar 

  • Fox, L.R., 1975. Factors influencing cannibalism, a mechanism of population limitation in the predatorNotonecta hoffmanni. Ecology, 56: 933–942.

    Google Scholar 

  • Genini, M., 1987. Ecosysteme verger de pommier: possibilites d'implantation des phytoseiides et modelization du sous-system verger —Panonychus ulmi (Koch) —Typhlodromus pyri (Scheuten). PhD thesis, L'Ecole Polytechnique Federale, Zurich, Switzerland, 133 pp.

    Google Scholar 

  • Greathead, D.J., 1986. Parasitoids in classical biological control. In: J.K. Waage and D.J. Greathead (Editors), Insect Parasitoids. Academic Press, New York, NY, pp. 289–318.

    Google Scholar 

  • Hardman, J.M., 1989. Model simulating the use of miticides to control European red mite (Acarina: Tetranychidae) in Nova Scotia apple orchards. Econ. Entomol., 82: 1411–1422.

    Google Scholar 

  • Hardman, J.M., and Rogers, M.L., 1991. Effects of temperature and prey density on survival, development, and feeding rates of immatureTyphlodromus pyri (Acari: Phytoseiidae). Environ. Entomol., 20: 1089–1096.

    Google Scholar 

  • Hassell, M.P., 1978. The Dynamics of Arthropod Predator-Prey Systems. Princeton University Press, Princeton, NJ, 237 pp.

    Google Scholar 

  • Hassell, M.P., 1985. Insect natural enemies as regulating factors. J. Anim. Ecol., 54: 323–334.

    Google Scholar 

  • Hassell, M.P. and May, R.M., 1986. Generalist and specialist natural enemies in insect predator-prey interactions. J. Anim. Ecol., 55: 923–940.

    Google Scholar 

  • Hastings, A., 1987. Cycles in cannibalistic egg-larval interactions. J. Math. Biol., 24: 651–666.

    Google Scholar 

  • Herbert, H.J., 1956. Laboratory studies on some factors in the life history of the predacious miteTyphlodromus tiliae Oudms. (Acarina: Phytoseiidae). Can. Entomol., 88: 701–704.

    Google Scholar 

  • Herbert, H.J., 1961. Influence of various numbers of prey on rate of development, oviposition and longevity ofTyphlodromus pyri Scheuten (Acarina: Phytoseiidae) in the laboratory. Can. Entomol., 93: 380–384.

    Google Scholar 

  • Herbert, H.J., 1962. Overwintering females and the number of generations ofTyphlodromus (T.) pyri Scheuten (Acarina: Phytoseiidae) in Nova Scotia. Can. Entomol., 94: 233–342.

    Google Scholar 

  • Herbert, H.J., 1981. Biology, life tables, and intrinsic rate of increase of the European red mitePanonychus ulmi (Acarina: Tetranychidae). Can. Entomol., 113: 65–71.

    Google Scholar 

  • Herbert, H.J. and Sanford, K.H., 1969. The influence of spray programs on the fauna-of apple orchards in Nova Scotia. XIX. Apple rust mite,Vasates schlechtendali, a food source for predators. Can. Entomol., 101: 62–67.

    Google Scholar 

  • Kuno, E., 1991. Verifying zero-infestation in pest control: a simple sequential test based on the succession of zero-samples. Res. Pop. Ecol., 33: 29–32.

    Google Scholar 

  • Murdoch, W.W., 1969. Switching in general predators: experiments on predator and stability of prey populations. Ecol. Monogr., 39: 335–354.

    Google Scholar 

  • Murdoch, W.W., 1989. The relevance of pest-enemy models to biological control. In: M. MacKauer and L. Ehler (Editors), Critical Issues in Biological Control. Intercept, Andover, UK, pp. 1–24.

    Google Scholar 

  • Murdoch, W.W. and Stewart-Oaten, A., 1989. Aggregation by parasitoids and predators: effects on equilibrium and stability. Am. Nat., 134: 288–310.

    Google Scholar 

  • Murdoch, W.W., Chesson, J. and Chesson, P.L., 1985. Biological control in theory and practice. Am. Nat., 125: 344–366.

    Google Scholar 

  • Nachman, G., 1988. Regional persistence of locally unstable predator/prey populations. Exp. Appl. Acarol., 5: 293–318.

    Google Scholar 

  • Nyrop, J.P., 1988. Spatial dynamics of an acarine predator-prey system:Typhlodromus pyri (Acarina: Phytoseiidae) preying onPanonychus ulmi (Acarina: Tetranychidae). Environ. Entomol., 17: 771–778.

    Google Scholar 

  • Orr, B.K., Murdoch, W.W. and Bence, J.R., 1990. Population regulation, convergence and cannibalism inNotonecta (Hemiptera). Ecology, 71: 68–82.

    Google Scholar 

  • Overmeer, W.P.J., 1985. Alternative prey and other food resources. In: W. Helle and M.W. Sabelis (Editors), Spider Mites. Their Biology, Natural Enemies and Control, Volume 1B. Elsevier, Amsterdam, pp. 131–140.

    Google Scholar 

  • Parent, B. and Pilon, J.-G., 1978, Ecologie et dynamique des populations naturelles du tetranique rouge du pommier,Panonychus ulmi (Koch), (Acarina: Tetranychidae) dans le sudouest du Quebec. Mem. Soc. Entomol. Que., 5: 1–106.

    Google Scholar 

  • Readshaw, J.L., Helm, K.F. and Lee, B., 1982. Guidelines for controlling orchard mites using insecticide-resistant predator. In: P.J. Cameron, C.H. Wearing and W.M. Dain (Editors), Proceedings of Australasian workshop on development and implementation of IPM, 20–22 July 1982, Auckland, New Zealand. Government Printer, Auckland, pp. 173–176.

    Google Scholar 

  • Reeve, J.D., 1988. Environmental variability, migration and persistence in host-parasitoid systems. Am. Nat., 132: 810–836.

    Google Scholar 

  • Reeve, J.D. and Murdoch, W.W., 1985. Aggregation by parasitoids in the successful control of the California red scale: a test of theory. J. Anim. Ecol., 54: 797–816.

    Google Scholar 

  • Royama, T., 1971. A comparative study of models of predation and parasitism. Res. Pop. Ecol., 1 (Suppl.): 1–91.

    Google Scholar 

  • Sabelis, M.W. and Diekmann, O., 1988. Overall population stability despite local extinction: the stabilizing influence of prey dispersal from predator-invaded patches. Theor. Pop. Biol., 34: 169–176.

    Google Scholar 

  • Stiling, P., 1987. The frequency of density dependence in insect host-parasitoid systems. Ecology, 68: 844–856.

    Google Scholar 

  • Taylor, L.R., 1961. Aggregation, variance and the mean. Nature, 189: 732–735.

    Google Scholar 

  • Vandermeer, J.M., 1973. On the regional stabilization of locally unstable predator-prey relationships. J. Theor. Biol., 41: 161–170.

    Google Scholar 

  • Walde, S.W., 1991. Patch dynamics of a phytophagous mite population: effect of number of subpopulations. Ecology, 72: 1591–1598.

    Google Scholar 

  • Walde, S.W. and Murdoch, W.W., 1988. Spatial density dependence in parasitoids. Annu. Rev. Entomol., 33: 441–466.

    Google Scholar 

  • Yao, D.S., 1986. The dynamics of two species of predatory mites (Acarina: Phytoseiidae) in an interactive system and their bearing on biological control: experimental and theoretical approaches. PhD thesis, University of Toronto, Canada, 307 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walde, S.J., Nyrop, J.P. & Hardman, J.M. Dynamics ofPanonychus ulmi andTyphlodromus pyri: factors contributing to persistence. Exp Appl Acarol 14, 261–291 (1992). https://doi.org/10.1007/BF01200568

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01200568

Keywords

Navigation