Integral Equations and Operator Theory

, Volume 17, Issue 2, pp 151–168 | Cite as

An integral equation formulation of the Riemann Hypothesis

  • Julio Alcántara-Bode

Primary classification number


Secondary classification numbers

11M26 47A10 30D15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [0]
    S. Agmon,Lectures on elliptic boundary value problems, Van Nostrand, New Jersey, 1965.Google Scholar
  2. [1]
    A. Beurling,A closure problem related to the Riemann zeta-function, Proc. Nat. Acad. Sci.41 (1955), 312–314.Google Scholar
  3. [2]
    A. Blanchard,Initiation à la theorie analytique des nombres, Dunod, Paris 1969.Google Scholar
  4. [3]
    R.P. Boas,Entire Functions, Academic Press, New York, 1954.Google Scholar
  5. [4]
    T. Carleman,Zur Theorie der linearen Integralengleichungen, Math. Z. 9 (1921), 196–217.Google Scholar
  6. [5]
    J.B. Conrey,More than two fifths of the zeros of the Riemann zeta function are on the critical line. J. reine angew. Math.399 (1989), 1–26.Google Scholar
  7. [6]
    T. Craven, G. Csordas and W. Smith,The zeros of the derivatives of entire functions and the Polya-Wiman conjecture, Annals of Math.125, (1987), 405–431.Google Scholar
  8. [7]
    K. Deimling,Non linear functional analysis, Springer, Berlin 1985.Google Scholar
  9. [8]
    W.F. Donoghue,Distributions and Fourier transforms, Academic Press, New York, 1969.Google Scholar
  10. [9]
    I.C. Gohberg and M.G. Krein,Introduction to the theory of linear nonselfadjoint operators, A.M.S., Rhode Island, 1969.Google Scholar
  11. [10]
    K. Jörgens,Lineare Integraloperatoren. Teubner, Stuttgart, 1970.Google Scholar
  12. [11]
    Y.O. Kim,A proof of the Polya-Wiman conjecture, Proc. Amer. Math. Soc.109 (1990), 1045–1052.Google Scholar
  13. [12]
    B.J. Levin,Distributions of zeros of entire functions, A.M.S., Rhode Island, 1964.Google Scholar
  14. [13]
    A.S. Markus,Some criteria for the completeness of a system of root vectors of a linear operator in a Banach space. A.M.S. Transl. (2)85 (1969), 51–91.Google Scholar
  15. [14]
    A. Markushevich,Teoria de las Funciones Analiticas, Vol. II, Mir, Moscow, 1978.Google Scholar
  16. [15]
    A.M. Odlyzko and H.J. te Riele.Disproof of the Mertens conjecture, J. reine angew. Math.357 (1985), 138–260.Google Scholar
  17. [16]
    S.J. Patterson,The theory of the Riemann zeta function, Cambridge University Press, Cambridge, 1989.Google Scholar
  18. [17]
    G. Pólya and G. Szegö,Problems and theorems in Analysis, Vol. II, Springer, Berlin 1976.Google Scholar
  19. [18]
    H.J. te Riele, J. van der Lune and D.T. Winter,On the zeros of the Riemann zeta-function in the critical strip, IV, Math. of Computation46 (1986), 667–681.Google Scholar
  20. [19]
    W. Rudin,Real and complex analysis, Mc Graw Hill, New York, 1974.Google Scholar
  21. [20]
    S. Saks and A. Zygmund,Analytic functions, PWN, Warsaw, 1971.Google Scholar
  22. [21]
    H.H. Tchaefer,Topological vector spaces, Macmillan, New York, 1966.Google Scholar
  23. [22]
    E.C. Titchmarsh,The theory of functions, Oxford University Press, London, 1960.Google Scholar
  24. [23]
    A.C. Zaanen,Linear analysis, North Holland, Amsterdam, 1964.Google Scholar

Copyright information

© Birkhäuser Verlag 1993

Authors and Affiliations

  • Julio Alcántara-Bode
    • 1
  1. 1.P.U.C.P. and U.P.C.H.LimaPeru
  2. 2.Lima 32Peru

Personalised recommendations