Skip to main content
Log in

Exponential lower bounds for the pigeonhole principle

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

In this paper we prove an exponential lower bound on the size of bounded-depth Frege proofs for the pigeonhole principle (PHP). We also obtain an Ω(loglogn)-depth lower bound for any polynomial-sized Frege proof of the pigeonhole principle. Our theorem nearly completes the search for the exact complexity of the PHP, as S. Buss has constructed polynomial-size, logn-depth Frege proofs for the PHP. The main lemma in our proof can be viewed as a general Håstad-style Switching Lemma for restrictions that are partial matchings. Our lower bounds for the pigeonhole principle improve on previous superpolynomial lower bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • M. Ajtai, The complexity of the pigeonhole principle, inProc. 29th Ann. IEEE Symp. Foundations of Computer Science, 1988, 346–355.

  • M. Ajtai, 138-1 on finite structures,Annals of Pure and Applied Logic,24 (1983), 1–48.

    Google Scholar 

  • P. Beame, Lower bounds for recognizing small cliques on CRCW PRAM's,Discrete Applied Mathematics,29 (1990), 3–20.

    Google Scholar 

  • P. Beame, J. Håstad, Optimal bounds for decision problems on the CRCW PRAM,Journal of the ACM,36 (1989), 643–670.

    Google Scholar 

  • P. Beame, R. Implagiazzo, J. Krajíček, T. Pitassi, P. Pudlák, A. Woods, Exponential lower bounds for the pigeonhole principle,Proc. 24th Ann. ACM Symp. Theory of Computing 1992, 200–220.

  • S. Bellantoni, T. Pitassi, A. Urquhart, Approximation and small-depth Frege proofs,SIAM Journal of Computing,21 (1992), 1161–1179.

    Google Scholar 

  • M. Bonet and S. Buss, The deduction rule and linear and near-linear proof simulations, preprint 1992.

  • S. Buss, Polynomial size proofs of the propositional pigeonhole principle,Journal of Symbolic Logic,52 (1987), 916–927.

    Google Scholar 

  • S. Buss, Personal communication, 1993.

  • S. A. Cook andR. Reckhow. The relative efficiency of propositional proof systems,Journal of Symbolic Logic,44 (1979), 36–50.

    Google Scholar 

  • M. Furst, J. Saxe, M. Sipser, Parity, circuits and the polynomial time hierarchy,Mathematical Systems Theory,17 (1984) 13–27.

    Google Scholar 

  • A. Haken, The intractability of Resolution,Theoretical Computer Science 39 (1985) 297–308.

    Google Scholar 

  • J. Håstad,Computational limitations of small-depth circuits, The MIT Press, Cambridge, Massachusetts, 1987.

    Google Scholar 

  • J. Krajíček, Lower bounds to the size of constant-depth propositional proofs, preprint (1991).

  • J. Krajíček, P. Pudlák, A. Woods, Exponential lower bounds to the size of bounded-depth Frege proofs of the pigeonhole principle, preprint (1991).

  • J. Lynch, A depth-size tradeoff for Boolean circuits with unbounded fan-in,Lecture Notes in Computer Science 223 (1986), 234–248.

    Google Scholar 

  • J. Paris, A. Wilkie, A. Woods, Provability of the pigeonhole principle and the existence of infinitely many primes,Journal of Symbolic Logic,53 Number 4 (1988).

    Google Scholar 

  • T. Pitassi, P. Beame, R. Impagliazzo, Exponential lower bounds for the pigeonhole principle, University of Toronto TR 257/91 (1991).

  • G. S. Tseitin, On the complexity of derivation in the propositional calculus,Studies in Constructive Mathematics and Mathematical Logic, Part II, A.O. Slisenko, 1968.

  • A. Urquhart, Hard examples for Resolution,JACM,34 (1987), 209–219.

    Google Scholar 

  • A. C. Yao, Separating the polynomial-time hierarchy by oracles,Proc. 26th Ann. IEEE Symp. Foundations of Computer Science, 1985, 1–10.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitassi, T., Beame, P. & Impagliazzo, R. Exponential lower bounds for the pigeonhole principle. Comput Complexity 3, 97–140 (1993). https://doi.org/10.1007/BF01200117

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01200117

Key words

Subject classifications

Navigation