Skip to main content
Log in

Perturbation theory and a dominated convergence theorem for Feynman integrals

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

A perturbation theorem for unitary groups generated by form sums of operators is established. This result is used to derive a general dominated convergence theorem for Feynman path integrals. It is then applied to the modified Feynman integral which is shown to enjoy optimal stability properties. The fact that the modified Feynman integral — previously introduced by the author — converges in a rather general setting, is used in an essential manner. Other results concerning less general definitions of the Feynman integral are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. BREZIS, “Analyse Fonctionelle. Théorie et Applications,” Masson, Paris, 1983.

    Google Scholar 

  2. H. BREZIS and T. KATO, Remarks on the Schrödinger operator with singular complex potentials, J. Math Pures et Appl.,58(1979), 137–151.

    Google Scholar 

  3. R. H. CAMERON and D. A. STORVICK, An operator valued function space integral and a related integral equation, J. Math. and Mech.,18(1968), 517–552.

    Google Scholar 

  4. E. B. DAVIES, “One-Parameter Semigroups,” Academic Press, London, 1980.

    Google Scholar 

  5. R. DESCOMBES, “Intégration,” Hermann, Paris, 1972.

    Google Scholar 

  6. E. HILLE and R. S. PHILLIPS, “Functional Analysis and Semigroups,” American Mathematical Society Colloquium Publications, revised ed., Vol. 31, Providence, Rhode Island, 1957.

  7. G. W. JOHNSON, A bounded convergence theorem for the Feynman integral, preprint, The University of Nebraska, Lincoln; to appear in J. Math. Phys.

  8. G. W. JOHNSON and D. L. SKOUG, A Banach algebra of Feynman integrable functionals with application to an integral equation formally equivalent to Schroedinger's equation, J. Functional Analysis,12(1973), 129–152.

    Google Scholar 

  9. G. W. JOHNSON and D. L. SKOUG, The Cameron-Storwick function space integral: The L1 theory, J. Math. Anal. Appl.,50(1975), 647–667.

    Google Scholar 

  10. G. W. JOHNSON and D. L. SKOUG, The Cameron-Storwick function space integral: an L(Lp, Lp′) theory, Nagoya Math. J.,60(1976), 93–137.

    Google Scholar 

  11. T. KATO, “Perturbation Theory for Linear Operators,” 2nd ed., Springer, Berlin, 1976.

    Google Scholar 

  12. T. KATO, Remarks on Schrödinger operators with vector potentials, Integral Equations and Operator Theory,1(1978), 103–113.

    Google Scholar 

  13. R. A. KUNZE and I. E. SEGAL, “Integrals and Operators,” 2nd rev. and enl. ed., Springer, Berlin, 1978.

    Google Scholar 

  14. M. L. LAPIDUS, The problem of the Trotter-Lie formula for unitary groups of operators, Séminaire Choquet, Publ. Math. Univ. Pierre-et-Marie-Curie, 1980/81,46(1982), 1701–1745.

    Google Scholar 

  15. M. L. LPIDUS, Modification de l'intégrale de Feynman pour un potentiel positif singulier: approche séquentielle, C. R. Acad. Sci. Paris Sér. I,295(1982), 1–3.

    Google Scholar 

  16. M. L. LAPIDUS, Intégrale de Feynman modifiée et formule du produit pour un potentiel singulier négatif, C. R. Acad. Sci. Paris Sér. I,295(1982), 719–722.

    Google Scholar 

  17. M. L. LAPIDUS, Product formula, imaginary resolvents and modified Feynman integral, preprint, The University of Southern California, Los Angeles 1983; submitted for publication. (Communicated at the American Mathematical Society Summer Research Institute on Nonlinear Functional Analysis and Applications, Univ. of California, Berkeley, July 1983. Lecture Notes No. L23.)

    Google Scholar 

  18. M. L. LAPIDUS, Product formula for imaginary resolvents with application to a modified Feynman integral, preprint, The University of Southern California, Los Angeles, 1983; submitted for publication.

    Google Scholar 

  19. E. NELSON, Feynman integrals and the Schrödinger equation, J. Math. Phys.,5(1964), 332–343.

    Google Scholar 

  20. M. REED and B. SIMON, “Methods of Modern Mathematical Physics,” Vol. II, “Fourier Analysis, Self-Adjointness”, Academic Press, New York, 1975.

    Google Scholar 

  21. M. REED and B. SIMON, “Methods of Modern Mathematical Physics,” Vol. I, “Functional Analysis,” rev. and enl. ed., Academic Press, New York, 1980.

    Google Scholar 

  22. C. G. SIMADER, Bemerkungen über Schrödinger-operatoren mit stark singularen potentialen, Math. Z.,138(1974), 53–70.

    Google Scholar 

  23. B. SIMON, Maximal and minimal Schrödinger forms, J. Operator Theory,1(1979), 37–47.

    Google Scholar 

  24. B. SIMON, Schrödinger semigroups, Bull. Amer. Math. Soc.,7(1982), 447–526.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by a grant from the Faculty Research and Innovation Fund at the University of Southern California.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapidus, M.L. Perturbation theory and a dominated convergence theorem for Feynman integrals. Integr equ oper theory 8, 36–62 (1985). https://doi.org/10.1007/BF01199981

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01199981

Keywords

Navigation