Skip to main content
Log in

Metallurgical factors determining the coercivity of ND-FE-B magnets

  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

In Nd-Fe-B based permanent magnets a high magnetocrystalline anisotropy of the hardmagnetic phase is necessary for a high intrinsic coercivity. In fact, metallurgical parameters (distribution of phases, chemical composition and crystal structures of phases) and processing parameters (alloy preparation, size and shape of particles, sintering and annealing treatments) determine the value of the coercive force of each sintered Nd-Fe-B magnet. Our analytical electron microscope study shows that “melt-spun” and sintered Nd-Fe-B based magnets contain more or less a distribution of nucleation centres for reversed domains, such as iron-rich phases andα-iron precipitates within the hardrnagnetic 2∶14∶1-grains. A continuous non-magnetic layer phase between the hardrnagnetic 2∶14∶1-grains increases the expansion field of reversed domains and increase the coercivity. In “melt-spun” magnets the contribution of the pinning of magnetic domain walls becomes effective during the magnetization reversal process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. J. Strnat,Proceedings of ASM Symposium on Soft and Hard Magnetic Materials with Applications, Amer. Soc. for Metals, Orlando, Florida, USA, Oct. 4–9, 1986.

    Google Scholar 

  2. D. Li, H. F. Mildrum, K. J. Strnat,J. Appl. Phys. 1985,57, 4140.

    Google Scholar 

  3. R. W. Lee, N. Schaffel, L. Brewer,IEEE Trans. Magn. 1985,21, 1958.

    Google Scholar 

  4. M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, Y. Matsuura,J. Appl. Phys. 1984,55, 2083.

    Google Scholar 

  5. J. Fidler,IEEE Trans. Magn. 1985,21, 1955.

    Google Scholar 

  6. R. K. Mishra,J. Magn. Mat. 1986,54–57, 450.

    Google Scholar 

  7. Y. L. Chen,IEEE Trans. Magn. 1985,21, 1967.

    Google Scholar 

  8. T. S. Chin, Y. Hara, E. J. Lavernia, R. C. O'Handley, N. J. Grant,J. Appl. Phys 1986,59, 1297.

    Google Scholar 

  9. K. D. Durst, H. Kronmüller, in press.

  10. N. A. El-Masry, H. H. Stadelmaier,Mat. Letters 1985,3, 405.

    Google Scholar 

  11. G. C. Hadjipanayis, K. R. Lawless, R. C. Dickerson,J. Appl. Phys. 1985,57, 4097.

    Google Scholar 

  12. G. C. Hadjipanayis, Y. F. Tao, K. R. Lawless,IEEE Trans. Magn. 1986,22, 1845.

    Google Scholar 

  13. K. Hiraga, M. Hirabayashi, M. Sagawa, Y. Matsuura,Jap. J. Appl. Phys. 1985,24, L30.

    Google Scholar 

  14. K. Hiraga, M. Hirabayashi, M. Sagawa, Y. Matsuura,Jap. J. Appl. Phys. 1985,24, 699.

    Google Scholar 

  15. J. D. Livingston,J. Appl. Phys. 1985,57, 4137.

    Google Scholar 

  16. Y. Luo, N. Zhang, G. D. Graham, in press.

  17. Y. Matsuura, S. Hirosawa, H. Yamamoto, S. Fujimura, M. Sagawa, K. Osamura,Jap. J. Appl. Phys. 1985,24, L635.

    Google Scholar 

  18. R. K. Mishra, J. K. Chen, G. Thomas,J. Appl. Phys. 1986,59, 2244.

    Google Scholar 

  19. R. K. Mishra, R. W. Lee,Appl. Phys. Lett,1986,48, 733.

    Google Scholar 

  20. T. Mizoguchi, I. Sakai, H. Niu, K. Inomata,IEEE Tram. Magn. 1986,22, 919.

    Google Scholar 

  21. R. Ramesh, K. M. Krishnan, E. Goo, G. Thomas, M. Okada, M. Homma,J. Magn. Magn. Mat. 1986,54–57, 363.

    Google Scholar 

  22. M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura, K. Higara,IEEE Trans. Magn. 1984,20, 1584.

    Google Scholar 

  23. T. Suzuki, K. Hiraga, M. Sagawa,Jap. J. Appl. Phys. 1984,23, L421.

    Google Scholar 

  24. T. Suzuki, K. Hiraga,J. Magn. Magn. Mat. 1986,54–57, 527.

    Google Scholar 

  25. P. Schrey,IEEE Trans. Magn. 1986,22, 913.

    Google Scholar 

  26. M. Tokunaga, M. Tobise, N. Meguro, H. Harada,IEEE Trans. Magn. 1986,22, 904.

    Google Scholar 

  27. J. Fidler, P. Skalicky, F. Rothwarf,Mikrochim. Acta [Wien] 1985,Suppl. 11, 371.

    Google Scholar 

  28. S. H. F. Parker, P. Grundy, J. Fidler,J. Magn. Magn. Mat. 1987,66, 74.

    Google Scholar 

  29. J. Fidler,IEEE Trans. Magn. 1987, in press.

  30. R. K. Mishra, personal communication.

  31. G. Schneider, E. Th. Henig, H. H. Stadelmaier, G. Petzow,Proc. 1986th Int. Powder Metallurgy Conf. PM 86, Düsseldorf, Verlag Schmid GmbH, Freiburg, 1986, p 1197.

    Google Scholar 

  32. D. S. Tsai, T. S. Chin, S. E. Hsu, M. P. Hung,IEEE Trans. Magn. 1987, in press.

  33. J. Fidler,Proc. Vth Int. Symp. on Magnetic Anisotropy and Coercivity in Rare Earth-Transition Metal Alloys, Bad Soden, Sept 1987, Vol. 2, DPG e.V., Bad Honef, 1987, p. 363.

    Google Scholar 

  34. H. Kronmüller, K. D. Durst, G. Martinek, in press.

  35. J. D. Livingston,IEEE Trans. Magn. 1987, in press.

  36. M. H. Ghandehari, J. Fidler,Materials Letters 1987,5, 285.

    Google Scholar 

  37. M. Tokunaga, M. Endoh, H. Harada,IEEE Trans. Magn. 1987, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fidler, J., Skalicky, P. Metallurgical factors determining the coercivity of ND-FE-B magnets. Mikrochim Acta 91, 115–124 (1987). https://doi.org/10.1007/BF01199483

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01199483

Key words

Navigation