Skip to main content
Log in

High-temperature resistant materials and structural ceramics for use in high-temperature reactor and fusion reactor plants-requirements for modern physico-chemical analysis

  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Following a brief description of primary energy requirements and the available resources, the application of advanced high-temperature gas-cooled reactors (HTR) for nuclear process heat and the technological aspects of Tokamak fusion reactors are reported. In both areas, the development of materials, in general, and materials characterization using modern physico-chemical methods, in particular, are crucial. The investigations for the HTR are concentrated on the optimization and on the verification of the long time behaviour of the materials. In contrast, the fusion reactor materials work is concerned with fundamental development stages and with plasma-wall interactions.

The emphasis is placed on the characterization of materials and on the invesitgation of reaction mechanisms, for which modern analytical techniques are required. In addition to the development and specific optimization of modern physico-chemical analysis techniques, the application potential for the methods is outlined and the available results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Knizia,Das Gesetz des Geschehens, Gedanken zur Energiefrage, ECON Verlag, Düsseldorf-Wien, 1986.

    Google Scholar 

  2. H. Nickel,KFA-Report Jül-Spez-86, 1980.

  3. W. Häfele,Umschau 1979,79, 629.

    Google Scholar 

  4. W. Häfele, R. Avenhaus, W. Sassin, J. Weingart, Kernenergie und ihre Alternativen, in:Gibt es Alternativen zur Kernenergie? (Kernenergie und Umwelt, No. 6), Handelsblatt GmbH, Düsseldorf, 1976, p 3.

    Google Scholar 

  5. H. Frewer,VGB Kraftwerktechnik 1986,66, 303.

    Google Scholar 

  6. G. Lehner, K. Honstetter,Solartechnik (Ullmanns Enzyklopädie der technischen Chemie, Bd. 21), Verlag Chemie, Weinheim, 1982, p. 575.

    Google Scholar 

  7. W. Jaek, A. Voß, Energieversorgung der Bundesrepublik Deutschland—mit oder ohne Kernenergie? Versuch einer systemanalytischen Antwort, in:Tatsachen über Kernenergie (E. Münch, ed.), Girardet, Essen, 1983, p. 1.

    Google Scholar 

  8. R. Schulten, Gelöste und noch zu lösende Probleme bei der Entwicklung von Hochtemperaturreaktoren und von Verfahren zur Nutzung der HTR-Wärme, in:Kohleumwandlung und Hochtemperaturreaktor — Bausteine neuer Energiekonzepte (VGB-TB 111), VGB Kraftwerkstechnik, Verlag technisch-wissenschaftliche Schriften, Essen, 1985, p. 145.

    Google Scholar 

  9. H. Nickel, T. Kondo, P. Rittenhouse,Nucl. Techn. 1984,66, 12.

    Google Scholar 

  10. H. Barnert, R. Schulten, E. Münch, Der Hochtemperaturreaktor, in:Tatsachen über Kernenergie, Girardet, Essen, 1983, p. 108.

    Google Scholar 

  11. R. Fischer, I. Weisbrodt,Proc. Conf. Gas-Cooled Reactors Today, Bristol, UK, Sept. 10–24, 1982, British Nuclear Energy Society, London, 1983.

    Google Scholar 

  12. W. Kröger, H. Nickel, R. Schulten,Nucl. Safety (in press).

  13. H. Nickel,KFA-Report Jül-Spez-326, 1985.

  14. B. F. Scribner, H. R. Mullin,J. Res. NBS 1946,37, 379.

    Google Scholar 

  15. G. Baudin,Prog. Analyt. Atom. Spectrosc., Vol. 3, Pergamon Press, Oxford, 1980, pp. 1–65.

    Google Scholar 

  16. D. Vukanović, M. Simic, V. Vukanović, H. Nickel, M. Mazurkiewicz,Spectrochim. Acta 1977,32B, 305.

    Google Scholar 

  17. H. Nickel, F. A. Peuser, M. Mazurkiewicz,Spectrochim. Acta 1978,33B, 675.

    Google Scholar 

  18. H. Nickel, F. Schubert, H. Schuster, P. J. Ennis,Nucl. Techn. 1982,58, 90.

    Google Scholar 

  19. High Temperature Gas-Cooled Reactor-Materials (R. G. Post, K. Wirtz, H. Nickel, P. L. Rittenhouse, T. Kondo, eds.),Nucl. Techn. 1984,66, 1–721.

  20. H. P. Meurer, H. Breitling, E. Grosser,Proceedings IAEA-Specialists Meeting, Vienna, May, 1981.

  21. K. Schmidt, H. Hoven, K. Koizlik, J. Linke, H. Nickel,Gefügeanalyse metallischer Werkstoffe, Interferenzschichtenmetallographie und automatische Bildanalyse, Hanser, München-Wien, 1985.

    Google Scholar 

  22. H. Kirchhöfer, J. Rottmann, F. Schubert, H. Nickel,KFA-Report Jül-1903, 1984.

  23. H. Schuster,Fresenius' Z. Anal. Chem. 1983,314, 246.

    Google Scholar 

  24. S. Leistikow,Int. Conf. of the Behaviour of High Temp Alloys in Aggressive Environments, Petten/NL, 1979, Proceedings Metal Soc., London, 1980, p. 197.

    Google Scholar 

  25. W. J. Quadakkers, H. Schuster,Werkstoffe und Korrosion 1985,36, 141, 335.

    Google Scholar 

  26. R. von der Gracht, P. J. Ennis, A. Czyrska-Filemonowicz, H. Schuster, H. Nickel,Proc. Int. Conf. on Creep, Tokyo, April 14–18, 1986, JSME, IMechE, ASME, ASTM, Tokyo, 1986, p. 123.

    Google Scholar 

  27. R. Bauer,Fresenius' Z. Anal. Chem. 1984,319, 758.

    Google Scholar 

  28. H. B. Grübmeier, L. Maldonado, A. Naoumidis, H. Nickel,Surf. Interf. Anal. 1986,9, 185.

    Google Scholar 

  29. A. Naoumidis, H. Beske, H. Holzbrecher, H. Nickel, H. A. Schulze,Fresenius' Z. Anal. Chem. 1987,329, 278.

    Google Scholar 

  30. H. B. Grübmeier, A. Naoumidis, H. A. Schulze,J. Vac Sci. Technol. 1986,A4, 2665.

    Google Scholar 

  31. M. Dogan, K. Laqua, H. Massmann,Spectrochim. Acta 1971,26B, 631;1972,27B, 65.

    Google Scholar 

  32. R. Berneron, J. C. Charbonnier,Surf. Interf. Anal. 1981,3, 134.

    Google Scholar 

  33. A. Quentmeier, D. Demeny, K. Laqua,Fresenius' Z. Anal. Chem. 1983,314, 235.

    Google Scholar 

  34. K. H. Koch, D. Sommer, D. Grunenberg,Mikrochim. Acta [Wien] 1985,Suppl. 11, 137.

    Google Scholar 

  35. H. Oechsner, E. Stumpe,Appl. Phys. 1977,14, 43.

    Google Scholar 

  36. M. Grasserbauer, H. J. Dudek, N. F. Ebel,Angewandte Oberflächenanalyse mit SIMS Sekundär-Ionen-Massenspektrometrie, AES Auger-Elektronen-Spektrometrie, XPS Röntgen-Photoelektronen-Spektrometrie, Springer, Berlin-Heidelberg-New York-Tokyo, 1986.

    Google Scholar 

  37. L. Rademacher, J. H. Schilling, H. E. Beske,Fresenius' Z. Anal. Chem. 1984,319, 724.

    Google Scholar 

  38. J. Eidens, G. H. Wolf,Atomwirtschaft/Atomtechnik 1982,XXVII, 138.

    Google Scholar 

  39. H. Conrads, G. H. Wolf,Bild der Wissenschaften 1981,12, 46.

    Google Scholar 

  40. INTOR, International Tokamak Reactor: Phase I Conceptual Design, Commission of the European Communities, Brüssel, EURFU BRU/XII 2/81/EDV-50, July, 1981.

  41. A. Miyahara,J. Nucl. Mat. 1982,111/112, 461.

    Google Scholar 

  42. F. Engelmann,Proc. of the 7th Int. Conf. on Plasma-Surface Interactions in Controlled Fusion Devices, Princeton, 1986.

  43. H. Hoven, K. Koizlik, J. Linke, H. Nickel, E. Wallura,KFA-Report Jül-2002, 1985.

  44. P. Deschamps, A. Grosman, M. Lipa, A. Samain,J. Nucl. Mat. 1984,128/129, 38.

    Google Scholar 

  45. R. Behrisch, P. Borgesen, J. Ehrenberg, B. Scherzer, B. D. Sawicka, J. A. Sawicki,J. Nucl. Mat. 1984,128/129, 470.

    Google Scholar 

  46. W. O. Hofer,Mikrochim. Acta [Wien] 1983,Suppl. 10, 1.

    Google Scholar 

  47. J. L. Cecchi, M. G. Bell, M. Bitter, W. R. Blanchard, N. Bretz, C. Bush, S. Cohen, J. Coonrod, S. L. Davis, D. Dimock, B. Doyle, H. F. Dylla, P. C. Efthimion, R. Fonck, R. J. Goldston, S. von Goeler, B. Grek, D. J. Grove, R. J. Hawryluk, D. Heifetz, H. Hendel, K. W. Hill, R. Hulse, J. Isaacson, D. Johnson, L. C. Johnson, R. Kaita, S. M. Kaye, S. Kilpatrick, J. Kiraly, R. J. Knize, R. Little, D. McCarthy, D. Manos, D. C. McCune, K. McGuire, D. M. Meade, S. S. Medley, D. Mikkelsen, D. Mueller, M. Murakami, E. Nieschmidt, D. K. Owens, A. T. Ramsey, A. L. Roquemore, N. Sauthoff, P. Stangeby, J. Schivell, S. Scott, S. Sesnic, J. Sinnis, J. Sredniawski, J. Strachan, G. D. Tait, G. Taylor, F. Tenney, C. E. Thomas, J. Timberlake, H. H. Towner, M. Ulrickson, K. M. Young,J. Nucl. Mat. 1984,128/129, 1.

    Google Scholar 

  48. R. W. Conn,J. Nucl. Mat. 1984,128/129, 407.

    Google Scholar 

  49. H. Bolt, H. Hoven, K. Koizlik, J. Linke, H. Nickel, E. Wallura,KFA-Report Jül-2024, 1985.

  50. J. Bohdansky, C. D. Croessmann, J. Linke;Proceedings of the 14th Symp. on Fusion Technology, Avignon, Sept. 1986, Pergamon Press, Oxford, 1986.

    Google Scholar 

  51. P. H. Emonds, P. Mioduszewski, J. B. Roberts, R. D. Watson, M. F. Smith,J. Nucl. Mat. 1984,128/129, 422.

    Google Scholar 

  52. M. Ulrickson,J. Vac. Sci. Techn. 1981,18, 1037.

    Google Scholar 

  53. G. H. Wolf,J. Nucl. 1984,122/123, 1124.

    Google Scholar 

  54. H. Hoven, E. Kny, K. Koizlik, J. Linke, H. Nickel, E. Wallura,KFA-Report Jül-2086, 1986.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nickel, H. High-temperature resistant materials and structural ceramics for use in high-temperature reactor and fusion reactor plants-requirements for modern physico-chemical analysis. Mikrochim Acta 91, 5–47 (1987). https://doi.org/10.1007/BF01199478

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01199478

Key words

Navigation