Skip to main content
Log in

Monte Carlo simulation of ion implantation into solids as a tool for the characterization of surface analytical reference materials

  • Original Papers
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The physical and chemical prerequisites of ion implantation and their translation into a Monte Carlo calculation simulating the implantation process of high energy ions (300 keV) are described; calculations are extended to high dose implantation (up to 1×1018 ions cm−2) taking into consideration various effects such as matrix change during implantation, cascade mixing, sputter erosion and relaxation of the target material.

To check the suitability of such calculations for a characterization of implanted samples, the results of the calculations are compared with those obtained experimentally from implanted samples. As an example,P + is implanted into polycrystalline Al at various doses (1⋯10×1017 p + cm−2), and depth profiles are taken by AES/Ar+-sputtering.

The calculated and measured results agree better than 10% for both the depth and the concentration scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Werner, R. P. H. Garten,Rep. Prag. Phys. 1984,47, 221.

    Google Scholar 

  2. W. H. Gries,Mikrochim. Acta [Wien] 1981,I, 335.

    Google Scholar 

  3. W. H. Gries,Mikrochim. Acta [Wien] 1985,Suppl. 11, 33.

    Google Scholar 

  4. M. T. Robinson, O. S. Oen,Appl. Phys. Lett. 1963,2, 30.

    Google Scholar 

  5. J. F. Ziegler, J. P. Biersack, V. Littmark,The Stopping and Range of Ions in Solids, Vol. 1, Pergamon Press, Oxford, New York, 1985.

    Google Scholar 

  6. H. Bubert,Mikrochim. Acta [Wien] 1985,Suppl. 11, 49.

    Google Scholar 

  7. T. Hirao, K. Inoue, S. Takayanagi, Y. Yaegashi,J. Appl. Phys. 1979,50, 193.

    Google Scholar 

  8. J. Takadoum, J. C. Pivin, J. Pons-Corbeau, R. Berneron, J. C. Charbonnier,Surf. Interface Anal. 1984,6, 174.

    Google Scholar 

  9. M. Schmidt, E. te Kaat, H. Bubert, R. P. H. Garten,Fresenius' Z. Anal. Chem. 1984,319, 616.

    Google Scholar 

  10. J. Lindhard,Kgl. Dan. Vid. Selsk. Mat. Fys. Medd. 1965,34, No. 14.

  11. W. A. Pliskin,IBM Journal 1966 (May), 198.

    Google Scholar 

  12. C. P. Ho, J. D. Plummer, J. D. Meindl, B. E. Deal,J. Electrochem. Soc. 1978,125, 665.

    Google Scholar 

  13. H. Kappert,Habil. Thesis, University of Dortmund, 1980.

  14. T. Ishitani, R. Shimizu, K. Murata,Japan. J. Appl. Phys. 1972,11, 125.

    Google Scholar 

  15. G. W. Lewis, G. Kiriakides, G. Carter, M. J. Nobes,Surf. Interface Anal. 1982,4, 141.

    Google Scholar 

  16. R. S. Nelson, D. J. Mazey,Ion Surface Interactions, Sputtering and Related Phenomena, Gordon and Breach, London, 1973, p. 199.

    Google Scholar 

  17. J. J. Ph. Elich, H. E. Roosendaal, H. H. Kersten, D. Onderdelinden, J. Kistemaker, J. D. Elen,Radiat. Eff. 1971,8, 1.

    Google Scholar 

  18. R. Behrisch (ed.),Sputtering by Particle Bombardment I, Physical Sputtering of Single-Element Solids (Topics in Applied Physics, Vol. 47), Springer, Berlin-Heidelberg-New York, 1981.

    Google Scholar 

  19. W. J. M. J. Josquin, Y. Tamminga,J. Electrochem. Soc. 1982,129, 1803.

    Google Scholar 

  20. W. Lenz,Z. Physik 1932,77, 713.

    Google Scholar 

  21. H. Jensen,Z. Physik 1932,77, 722.

    Google Scholar 

  22. A. Sommerfeld,Z. Physik 1932,78, 283.

    Google Scholar 

  23. G. Moliere,Z. Naturf. 1947,2 a, 133.

    Google Scholar 

  24. N. Bohr,Kgl. Dan. Vid. Selsk. Mat. Fys. Medd. 1948,18, 8.

    Google Scholar 

  25. W. D. Wilson, L. G. Haggmark, J. P. Biersack,Phys. Rev. 1977,B15, 2458.

    Google Scholar 

  26. S. Kalbitzer, H. Oetzmann,Rad. Effects 1980,47, 57.

    Google Scholar 

  27. J. Lindhard, M. Scharff, H. E. Schiøtt,Kgl. Dan. Vid. Selsk. Mat. Fys. 1963,33, No. 14.

    Google Scholar 

  28. O. B. Firsov,Zh. Eksp. Teor. Fiz. 1957,33, 696;Sov. Phys. JETP 1958,6, 534.

    Google Scholar 

  29. J. Lindhard, M. Scharff,Phys. Rev. 1961,124, 128.

    Google Scholar 

  30. For example, see B. Smith,Ion Implantation Range Data for Silicon and Germanium Device Technologies, Learned Information (Europe) Ltd., Oxford, 1977, and references therein.

    Google Scholar 

  31. L. C. Northcliffe,Phys. Rev. 1960,120, 1744.

    Google Scholar 

  32. J. F. Ziegler,Appl. Phys. Lett. 1977,31, 544.

    Google Scholar 

  33. M. S. Livingston, H. A. Bethe,Rev. Mod. Phys. 1937,9, 263.

    Google Scholar 

  34. C. Varelas, J. Biersack,Nucl. Instr. and Meth. 1970,79, 213.

    Google Scholar 

  35. M. P. Seah,Quantification of AES and XPS, in:Practical Surface Analysis (D. Briggs, M. P. Seah, eds.), Wiley, Chichester, 1983.

    Google Scholar 

  36. S. Ichimura, R. Shimizu,Surf. Sci. 1981,112, 386.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bubert, H. Monte Carlo simulation of ion implantation into solids as a tool for the characterization of surface analytical reference materials. Mikrochim Acta 90, 387–406 (1986). https://doi.org/10.1007/BF01199280

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01199280

Key words

Navigation