Skip to main content

Exact analytical solutions for non-selfadjoint variable-topology shape optimization problems: perforated cantilever plates in plane stress subject to displacement constraints. Part I

Abstract

Lurie (1994, 1995a, b) proved recently that variabletopology shape optimization of perforated plates in flexure for non-selfadjoint problems leads to rank-2 microstructures which are in general nonorthogonal. An extension of the same optimal microstructures to perforated plates in plane stress will be presented in Part II of this study. Using the above microstructure, the optimal solution is derived in this part for cantilever plates in plane stress, which are subject to two displacement constraints. For low volume fractions the above solutions are shown to converge to the known truss solutions of Birkeret al. (1994). The problem of homogenizing the stiffness of nonorthogonal rank-2 microstructures is also discussed.

This is a preview of subscription content, access via your institution.

References

  • Bendsøe, M.P. 1995:Optimization of structural topology, shape and material. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Birker, T.; Lewiński, T.; Rozvany, G.I.N. 1994: A well-posed nonselfadjoint layout problem: least-weight plane truss for one load condition and two displacement constraints.Struct. Optim. 8, 195–205

    Google Scholar 

  • Gibiansky, L.V.; Cherkaev, A.V. 1984: Design of composite plates of extremal stiffness. Peport 914, A.F. Ioffe Inst., Leningrad (in Russian)

    Google Scholar 

  • Jog, C.; Haber, R.B.; Bendsøe, M. 1994: Topology design with optimized, self-adaptive materials.Int. J. Meth. Engrg. 37, 1323–1350

    Google Scholar 

  • Kohn, R.V.; Strang, G. 1986: Optimal design and relaxation of variational problems. I, II and III.Comm. Pure Appl. Math. 39, 113–137, 139–182, 353–377

    Google Scholar 

  • Lurie, K.A. 1994: Direct relaxation of optimal layout problems for plates.JOTA 80, 93–116

    Google Scholar 

  • Lurie, K.A. 1995a: On direct relaxation of optimal material design problems for plates.WSSIAA 5, 271–296

    Google Scholar 

  • Lurie, K.A. 1995b: An optimal plate. In: Olhoff, N.; Rozvany, G.I.N. (eds.)Proc. First World Cong. on Structural and Multidisciplinary Optimization, pp. 169–176. Oxford: Pergamon

    Google Scholar 

  • Lurie, K.A.; Cherkaev, A.V.; Fedorov, A.V. 1982: Regularization of optimal design problems for bars and plates. Parts I–III.JOTA 37, 499–522, 523–543;42, 247–282

    Google Scholar 

  • Ong, T.G. 1987:Structural optimization via static-kinematic optimality criteria. Ph.D. Thesis, Monash University, Melbourne

    Google Scholar 

  • Ong, T.G.; Rozvany, G.I.N.; Szeto, W.T. 1988: Least-weight design of perforated elastic plates for given compliance: nonzero Poisson's ratio.Comp. Meth. Appl. Mech. Eng. 66, 301–322

    Google Scholar 

  • Rozvany, G.I.N. 1989:Structural design via optimality criteria. Dordrecht: Kluwer

    Google Scholar 

  • Rozvany, G.I.N.; Olhoff, N.; Bendsøe, M.P.; Ong, T.G.; Szeto, W.T. 1985/87: Least-weight design of perforated elastic plates.DCAMM Report No. 306. Techn. Univ. Denmark, Lyngby; also:Int. J. Solids Struct. 23, 521–536, 537–550

    Google Scholar 

  • Saint Venant, B. de 1955:Mémoires des savants étrangers, Vol. 14

  • Szeto, W.T. 1989:Microstructure studies in structural optimization. Ph.D. Thesis, Monash University, Melbourne

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Károlyi, G., Rozvany, G.I.N. Exact analytical solutions for non-selfadjoint variable-topology shape optimization problems: perforated cantilever plates in plane stress subject to displacement constraints. Part I. Structural Optimization 13, 119–127 (1997). https://doi.org/10.1007/BF01199230

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01199230

Keywords