Skip to main content
Log in

A.c. conductivity for amorphous TeO2-P2O5 glass system

  • Paper
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The a.c. conductivity for the TeO2-P2O5 glassy system was measured in the temperature range 300–573 K and in the frequency range 100 Hz to 10 kHz. The a.c. conductivity Σ(Ω) increased with frequency according to the relation Σ(Ω)αΩs. The frequency exponent s was found to decrease with increasing temperature. The composition dependence of the conductivity was also investigated. The density of states was also calculated using the Elliott model. The a.c. conductivity increased over the studied temperature range. The obtained experimental data have been analysed with reference to various theoretical models. The analysis shows that the correlated barrier hopping (CBH) model is the most appropriate mechanism for conduction in the TeO2-P2O5 glass system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Surinach M. D. Baro M. T. Clavagueramora andN. Clavaguera Fluid Phase Equilibria 20 (1985) 341.

    Google Scholar 

  2. N. V. Ovcharenko, “The physicochemical properties of Phosphate-Tellurite glasses”, Discussion Themes for All-Union Conference Phosphates-84 in Russian. Part 1, Alma-Ata (1984) pp. 189.

  3. A. Abdel-Kader A. A. Higazy andM. M. Elkholy J. Mater. Sci. Mater. Elec. 2 (1991) 157.

    Google Scholar 

  4. A. Abdel-Kader A. A. Higazy andM. M. Elkholy J. Mater. Sci. Mater. Elec. 2 (1991) 204.

    Google Scholar 

  5. N. U. Ovcharenko, andV. U. Volkova, Translated fromFizika i Khimiya Stekla 15 (2) (1989) 190.

    Google Scholar 

  6. A. Mansingh R. P. Tandom andJ. K. Valid Phys. Rev. B21 (1980) 4829.

    Google Scholar 

  7. A. Mansingh J. K. Valid andR. P. Tandom J. Appl. Phys. C8 (1975) 1023.

    Google Scholar 

  8. L. Murawski Phil. Mag. B50 (1984) L69.

    Google Scholar 

  9. A. Ghosh andB. K. Chaundhuri J. Mater. Sci. 22 (1987) 2376.

    Google Scholar 

  10. U. Khzhukharov M. Marinov andG. Grigorova J. Non-Cryst. Solids 28 (1978) 429.

    Google Scholar 

  11. A. Abdel-Kader A. A. Higazy M. M. Elkholy andR. M. El-Bahnasawy J. Mater. Sci. 26 (1991) 4298.

    Google Scholar 

  12. G. E. Pike Phys. Rev. B6 (1972) 1572.

    Google Scholar 

  13. S. R. Elliott Phil. Mag. 36 (1977) 1291.

    Google Scholar 

  14. S. R. Elliott Adv. Phys. 36 (1987) 135.

    Google Scholar 

  15. M. Pollak andT. H. Geballe Phys. Rev. B122 (1961) 1742.

    Google Scholar 

  16. I. Austin andN. F. Mott J. Adv. Phys. 18 (1969) 41.

    Google Scholar 

  17. K. Shimakawa Phil. Mag. B46 (1982) 123.

    Google Scholar 

  18. A. R. Long Adv. Phys. 31 (1982) 553.

    Google Scholar 

  19. M. Polak Phys. Rev. 138 (1965) 1822.

    Google Scholar 

  20. R. M. Hill andA. K. Jonscher J. Non-Cryst. Solids 32 (1979) 53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elkholy, M.M. A.c. conductivity for amorphous TeO2-P2O5 glass system. J Mater Sci: Mater Electron 5, 157–162 (1994). https://doi.org/10.1007/BF01198947

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01198947

Keywords

Navigation