Skip to main content
Log in

Density, differential thermal analysis and direct-current conductivity of Sb10S90 −x Ge x chalcogenide glasses

  • Paper
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The glass-transition temperature,T g, and the crystallization temperature,T c for glassy Sb10S90 −x Ge x samples were increased by increasing the Ge content. This was attributed to the closeness of the network by bridging Sb and/or S atoms with additional Ge atoms to form harder Ge–Sb and/or Ge–S bonds. The direct current (d.c.) electrical conductivity for the system Sb10S90 −x Ge x shows semiconducting behaviour with increasing temperature. At low temperatures, the conductivity was attributed to a hopping conduction mechanism, while at high temperatures it was due to regular band-type conduction. The activation energy, δE Σ and the conductivity, Σ0 were increased at low Ge contents. This may be related to the entrance of Ge atoms into the S–S chains. On the other hand, the increase of the Ge content above 20 at % lead to a conversion of the behaviour of the δE Σ and Σ0 from the insulating character of S to the semiconducting character of Ge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kawamato J. Amer. Ceram. Soc. 52 (1969) 626.

    Google Scholar 

  2. Y. Kawamato andS. Tsuchinashi,ibid. J. Amer. Ceram. Soc. 54 (1971) 131.

  3. A. Hurby CzecH. J. Phys. B 23 (1972) 11263.

    Google Scholar 

  4. W. Ichiro J. Phys. Soc. Jpn 41 (1976) 2030.

    Google Scholar 

  5. A. B. Pazen Neorgan Matter (Russ) 8 (1972) 247.

    Google Scholar 

  6. R. Nemanich J. Phys. Rev. B 18 (1978) 6900.

    Google Scholar 

  7. L. červinka J. Non-Cryst. Solids 48 (1982) 231.

    Google Scholar 

  8. G. Dalba P. Fornasini andG. Giunta Sol. State Commun. 62 (1987) 773.

    Google Scholar 

  9. IdeM. G. Dalba, P. Fornasini and G. Giunta,J. Non-Cryst. Solids 107 (1989) 261.

  10. H. Rawson, Inorganic glass forming systems (Academic Press, New York, 1967).

    Google Scholar 

  11. N. H. Ray, Inorganic polymers (Academic Press, New York, 1978) p. 45 ff.

    Google Scholar 

  12. Z. Boncheva J. Non-Cryst. Solids 30 (1978) 147.

    Google Scholar 

  13. A. Gridhar, L. N. Narasimham and A. Mahadevan,ibid. J. Non-Cryst. Solids 43 (1981) 29.

  14. R. A. Smith, ‘Semiconductors’ (Cambridge University Press, 1968) p. 345 ff.

  15. A. K. Singah andG. C. Kennedy J Appl. Phys. 46 (1975) 386.

    Google Scholar 

  16. A. Giridhar P. S. Narasimham, andS. Mahadevan J. Non-Cryst. Solids 37 (1980) 165–179.

    Google Scholar 

  17. O. S. Panwar, A. Kumar, D. R. Goyak, K. K. Srivastava and K. K. Lakshminarayan,ibid. J. Non-Cryst. Solids 30 (1978) 37.

  18. L. Tanaka,ibid. J. Non-Cryst. Solids 12 (1973) 100.

  19. R. M. Mehra Phys. Rev. B 19 (1979) 12, 6525.

    Google Scholar 

  20. P. K. Bahat Solid State Elec. 22 (1979) 383.

    Google Scholar 

  21. A. Gridhar L. N. Narasimham andS. Mahadevan J. Non-Cryst. Solids 37 (1980) 105.

    Google Scholar 

  22. E. A. Zhilinskaya,ibid. J. Non-Cryst. Solids 124 (1990) 48.

    Google Scholar 

  23. H. Ticha, L. Tichy, N. Rysava and A. triska,ibid. J. Non-Cryst. Solids 74 (1985) 37.

  24. D. R. Swiler, A. K. Varshneya and R. M. Callahan,ibid. J. Non-Cryst. Solids 125 (1990) 250.

    Google Scholar 

  25. Deneufville and H. K. Rockstadt, in “Amorphous and liquid semiconductors” edited by J. Stuke and W. Brenig, Vol. 1 (Taylor and Francis, London, 1974) p. 419.

  26. T. Shimuzu,Solid State Commun. 27 (1978) 223.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Hamalawy, A.A., El-Zaidia, M.M., Ammar, A.A. et al. Density, differential thermal analysis and direct-current conductivity of Sb10S90 −x Ge x chalcogenide glasses. J Mater Sci: Mater Electron 5, 147–152 (1994). https://doi.org/10.1007/BF01198945

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01198945

Keywords

Navigation