Engineering with Computers

, Volume 12, Issue 3–4, pp 243–255 | Cite as

Topological refinement procedures for triangular finite element meshes

  • S. A. Canann
  • S. N. Muthukrishnan
  • R. K. Phillips


This paper presents a topological approach to improve the quality of unstructured triangular finite element meshes. Topological improvement procedures are presented both for elements that are interior to the mesh and for elements connected to the boundary. Optimal ordering of the topology improvement operations and their efficient implementation is also discussed. Several example meshes are included to demonstrate the effectiveness of the approach in improving element quality in a finite element mesh.


Finite element Mesh modification Triangular mesh refinement and derefinement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baehmann, P.L. (1989) Automated finite element modeling and simulation. PhD Dissertation, Rensselaer Polytechnic Institute, Troy, New YorkGoogle Scholar
  2. 2.
    Blacker, T.D.; Stephenson, M.B.; Canann, S.A. (1991) Analysis automation with paving: a new quadrilateral meshing technique. Advances in Engineering Software, 13, 5/6, 332–337Google Scholar
  3. 3.
    Blacker, T.D.; Stephenson, M.B. (1990) Paving: a new approach to automated quadrilateral mesh generation. Sandia National Laboratories, Albuquerque, NM, Sandia Report No. SAND90-0249Google Scholar
  4. 4.
    Zhu, J.Z.; Zienkiewicz, O.C.; Hinton, E.; Wu, J. (1991) A new approach to the development of automatic quadrilateral mesh generation. International Journal for Numerical Methods in Engineering, 32, 849–866Google Scholar
  5. 5.
    Lee, C.K.; Lo, S.H. (1994) A new scheme for the generation of a graded quadrilateral mesh. Computers and Structures, 52, 847–857Google Scholar
  6. 6.
    Canann, S.A.; Muthukrishnan, S.N.; Phillips, R.K. (1994) Topological refinement procedures for quadrilateral finite element meshes. Engineering with Computers, submitted for publicationGoogle Scholar
  7. 7.
    Cavendish, J.C. (1974) Automatic triangulation of arbitrary planar domains for the finite element method. International Journal for Numerical Methods in Engineering, 8, 679–696Google Scholar
  8. 8.
    Joe, B. (1986) Delaunay triangular meshes in convex polygons. SIAM Journal of Scientific Statistical Computation, 7, 514–539Google Scholar
  9. 9.
    l'Isle, E.B.; George, P.L. (1993) Optimization of tetrahedral meshes. Submitted for publicationGoogle Scholar
  10. 10.
    Blacker, T.D.; Meyers, R.J. (1991) Seams and wedges in plastering: a 3D hexahedral mesh generation algorithm. Computers in Engineering, 9, 83–93Google Scholar
  11. 11.
    Canann, S.A.; Muthukrishnan, S.N.; Phillips, R. (1994) Topological improvement procedures for triangular and quadrilateral finite element meshes. Presented at the 3rd International Meshing Round Table, Albuquerque, NMGoogle Scholar

Copyright information

© Springer-Verlag London Limited 1996

Authors and Affiliations

  • S. A. Canann
    • 1
  • S. N. Muthukrishnan
    • 1
  • R. K. Phillips
    • 1
  1. 1.The MacNeal-Schwendler CorporationCosta MesaUSA

Personalised recommendations