Skip to main content
Log in

Potentials on the hexagonal grid

  • Published:
Circuits, Systems and Signal Processing Aims and scope Submit manuscript

Abstract

The aim of this paper is to give an explicit computation for the potential generated by a dipole on a hexagonal grid. Such a computation will be expressed as the Fourier transform of a distribution on the bidimensional torus\(\mathbb{T}^2 \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Courant, K. Friedrichs, and H. Lewy, über die partiellen Differenzengleichungen der mathematischen Physik,Math. Ann. 100 (1928), 32–74.

    Google Scholar 

  2. P. G. Doyle and J. L. Snell, Random walks and electric network, Mathematical Association of America, Washington D.C., 1984.

    Google Scholar 

  3. R. J. Duffin, Discrete potential theory,Duke Math. J. 20 (1953), 233–251.

    Google Scholar 

  4. R. E. Edwards,Fourier Series—A Modern Introduction, vol. II, Holt, Rinehart and Winston, New York, Chicago, San Francisco, Atlanta, Dallas, Montreal, Toronto, London, 1967.

    Google Scholar 

  5. H. Flanders, Infinite networks I—Resistive networks,IEEE Trans. Circuit Theory CT-18 (1971), 326–331.

    Google Scholar 

  6. —, Infinite networks II—Resistance in infinite grid,J. Math. Anal. Appl. 40 (1972), 30–35.

    Google Scholar 

  7. W. H. McCrea and F. J. W. Whipple, Random path in two and three dimensions,Proc. Roy. Soc. Edinburgh 60 (1940), 281–298.

    Google Scholar 

  8. C. Melzi, Computing potentials on a periodic bidimensional grid,Circuits Systems Signal Process.15 (1996), 519–527.

    Google Scholar 

  9. E. Schlesinger, Infinite networks and Markov chains,Boll. Un. Mat. Ital. 6-B (1992), 23–37.

    Google Scholar 

  10. P. M. Soardi, Potential theory on infinite networks,Lecture Notes in Math., vol 1590, Springer-Verlag, Berlin, Heidelberg, New York, 1994.

    Google Scholar 

  11. P. M. Soardi and W. Woess, Uniqueness of current in infinite resistive networks,Discrete Appl. Math. 31 (1991), 37–49.

    Google Scholar 

  12. F. Spitzer,Principles of Random Walks, Van Nostrand, Princeton, NJ, 1964.

    Google Scholar 

  13. A. Stöhr, über einige lineare partielle Differenzengleichungen mit konstanten Koeffizienten I,Math. Nach. 3 (1950), 202–242;III,Math. Nach 3 (1950), 330–357.

    Google Scholar 

  14. B. Van der Pol, The finite difference analogue of the periodic wave equation and the potential equation,Probability and related topics in physical sciences (Appendix IV) (M. Kac, ed.), Interscience, London, 1959.

    Google Scholar 

  15. A. H. Zemanian, Infinite electrical networks,Proc. IEEE 64 (1976), 6–17.

    Google Scholar 

  16. —,Infinite Electrical Network, Cambridge University Press, Cambridge, U.K, 1991.

    Google Scholar 

  17. A. H. Zemanian and P. Subramanian, A theory of undergrounded grids and its applications to the geophysical exploration of layered strata,Studia Math. 77 (1991), 162–181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melzi, C. Potentials on the hexagonal grid. Circuits Systems and Signal Process 16, 405–414 (1997). https://doi.org/10.1007/BF01198058

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01198058

Keywords

Navigation