Skip to main content
Log in

Modelling of dimensional changes during polymer-ceramic conversion for bulk component fabrication

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Shrinkage and porosity generation during conversion of polymer-filler systems into ceramic bodies during pyrolysis is examined. In the presence of an inert filler phase such as Si3N4 or SiC powder dispersed in an organosilicon polymeric matrix only porous microstructures may be obtained without any shrinkage. By using an active filler phase such as carbide- or nitride-forming transition metals, however, shrinkage of the polymer matrix may be compensated by appropriate expansion of the filler phase. A model is derived to predict the critical volume fractions of various potential active filler systems in inert and reactive gas atmospheres, which can be effective in controlling shrinkage and porosity during the fabrication of ceramic components from polymer-derived precursor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

P :

Polymer phase

C :

Condensed polymer pyrolysis product (ceramic)

G :

Gaseous polymer decomposition product

F :

Inert filler phase

T :

Active filler phase (e.g. transition metal)

M :

Reaction product of active filler phase (e.g. carbide, nitride)

m :

Mass

V :

Volume fraction

V maxF,T :

Maximum packing density of an inert (F) or active (T) filler powder

V *F,t :

Critical volume fraction of an inert (F) or active (T) filler powder in the starting polymer-filler mixture

V v :

Residual porosity in the polymer pyrolysis product

V v pf :

Residual porosity in the polymer-inert filler system after pyrolysis

α:

Ceramic yield of polymer after pyrolysis

α™:

Weight change of active filler phase during reaction pyrolysis

β:

Density ratio of polymer to polymer pyrolysis (ceramic) product

β™:

Density ratio of active filler to filler reaction product

ɛP :

Linear shrinkage of the polymer phase during pyrolysis

ɛpf :

Linear shrinkage of a polymer-inert filler system during pyrolysis

ɛpaf :

Linear shrinkage of a polymer-active filler system during reaction pyrolysis

ɛ™:

Linear shrinkage/expansion of the filler phase during reaction

ϱ:

Density

References

  1. D. Seyferth andG. H. Wisemann,J. Amer. Ceram. Soc. 67 (1984) C 132.

    CAS  Google Scholar 

  2. K. J. Wynne andR. W. Rice,Ann. Rev. Mater. Sci. 14 (1984) 297.

    Article  CAS  Google Scholar 

  3. W. Verbeek, US Patent 3 853 567 (1974).

  4. G. Winter, W. Verbeek andM. Mansmann US Patent 3 892 583 (1974).

  5. S. Yajima, J. Hajashl M. Omori andK. Okamura,Nature 261 (1976) 525.

    Article  Google Scholar 

  6. C. L. Schilling, J. P. Wesson andT. C. Williams,Amer. Ceram. Soc. Bull. 62 (1983) 912.

    CAS  Google Scholar 

  7. R. C. West, US Patent 4260780 (1981).

  8. D. Seyferth, G. H. Wisemann andC. Prud'homme,J. Amer. Ceram. Soc. 66 (1983) C 13.

    Article  CAS  Google Scholar 

  9. R. W. Rice,Amer. Ceram. Soc. Bull. 62 (1983) 889.

    CAS  Google Scholar 

  10. G. Pouskoulelli,Ceram. Int. 15 (1989) 213.

    Article  Google Scholar 

  11. S. Yajima,Amer. Ceram. Soc. Bull. 62 (1983) 893.

    CAS  Google Scholar 

  12. C. J. Beatty, in “Ultrastructure Processing of Ceramics, Glasses and Composites”, edited by L. L. Hench and D. R. Ulrich (Wiley, New York, 1984) p. 272.

    Google Scholar 

  13. R. M. Laine, Y. D. Blum andD. R. Glasser, in “Inorganic and Organometallic Polymers”, ACS Symposium Series 360, edited by M. Zeldin, K. Y. Wynne and H. R. Allcock (American Chemical Society, Washington, DC, 1988) p. 124.

    Chapter  Google Scholar 

  14. D. Seyferth andG. H. Wisemann, in “Ultrastructure Processing of Ceramics, Glasses and Composites”, edited by L. L. Hench and D. R. Ulrich (Wiley, New York, 1984) p. 265.

    Google Scholar 

  15. D. Seyferth, G. H. Wisemann, J. M. Schwark, Y. F. Yu andC. A. Poutasse, in “Inorganic and Organometallic Polymers”, ACS Symposium Series 360, edited by M. Zeldin, K. Y. Wynne and H. R. Allcock (American Chemical Society, Washington, DC, 1988) p. 143.

    Chapter  Google Scholar 

  16. K. B. Schwartz, D. J. Rowcliffe andY. D. Blum,Adv. Ceram. Mater. 3 (1988) 320.

    CAS  Google Scholar 

  17. K. B. Schwartz andY. D. Blum,Mater. Res. Soc. Symp. Proc. 121 (1988) 483.

    Article  CAS  Google Scholar 

  18. Y. D. Blum, K. B. Schwartz, E. J. Crawford andR. D. Hamlin, in “Better Ceramics Through Chemistry III”, edited by C. J. Brinker (MRS, Pittsburgh, 1988) p. 565.

    Google Scholar 

  19. F. I. Hurwitz, J. Z. Gynekenyesi andP. J. Conroy,Ceram. Eng. Sci. Proc. 10 (1989) 750.

    Article  CAS  Google Scholar 

  20. D. Seyferth andW. S. Rees, in “Better Ceramics Through Chemistry HI”, edited by C. J. Brinker (MRS, Pittsburgh, 1988) p. 444.

    Google Scholar 

  21. P. Grel andM. M. Seibold, in “Advanced Structural Inorganic Composites”, Symposium 2 of 7th CIMTEC World Ceramic Congress, edited by D. Vincenzini, (Elsevier, Amsterdam, 1991) p. 555.

    Google Scholar 

  22. P. Greil andM. M. Seibold, in Proceedings of 2nd International Ceramic Science and Technology Congress, Orlando, Florida, 1990 (American Ceramic Society) in press.

  23. G. E. Legrow, T. F. Lim, J. Lipowitz andR. S. Reaoch,Amer. Ceram. Soc. Bull. 66 (1987) 363.

    CAS  Google Scholar 

  24. M. Peuckert, T. Vaahs andM. Brock,Adv. Mater. 2 (1990) 398.

    Article  CAS  Google Scholar 

  25. D. Seyferth andH. Plenio,J. Amer. Ceram. Soc. 73 (1990) 2131.

    Article  CAS  Google Scholar 

  26. M. L. Hackney, L. V. Interrante, G. A. Slack andP. J. Shields, in “Ultrastructure Processing of Advanced Ceramics”, edited by J. D. Mackenzie and D. R. Ulrich, (Wiley, New York, 1988) p. 99.

    Google Scholar 

  27. B. E. Walker, R. W. Rice, P. F. Becher, B. A. Bender andW. S. Coblenz,Amer. Ceram. Soc. Bull. 62 (1983) 916.

    CAS  Google Scholar 

  28. S. Yajima, T. Iwai, T. Yamamura, K. Okamura andY. Hasegawa,J. Mater. Sci. 16 (1981) 1349.

    Article  CAS  Google Scholar 

  29. G. M. Rrenund, PhD thesis, Rensselaer Polytechnic Institute, Troy, New York (1989).

  30. B. A. Bender, R. W. Rice andJ. R. Spann,Ceram. Eng. Sci. Proc. 6 (1985) 1171.

    Article  CAS  Google Scholar 

  31. M. M. Seibold andC. Rüssel,J. Amer. Ceram. Soc. 72 (1989) 1503.

    Article  CAS  Google Scholar 

  32. K. Kuroda, Y. Tanaka, Y. Sugahara andC. Kato, in “Better Ceramics Through Chemistry III”, edited by C. J. Brinker (MRS, Pittsburgh, 1988) p. 575.

    Google Scholar 

  33. T. Kitaoka andY. Seki,J. Ceram. Soc. Jpn. Int. Edn. 96 (1988) 572.

    Google Scholar 

  34. K. B. Schwartz andD. J. Rowcliffe,J. Amer. Ceram. Soc. 69 (1986) C 106.

    Article  Google Scholar 

  35. R. Kieffer andF. Benesovsky, “Hartstoffe”, (Springer, Wien 1963).

    Google Scholar 

  36. G. H. Wisemann, PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts (1984).

  37. S. Yajima, T. Shishido andM. Hamano,Nature 266 (1977) 522.

    Article  CAS  Google Scholar 

  38. S. Yajima, T. Shishido andK. Okamura,Amer. Ceram. Soc. Bull. 56 (1977) 522.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greil, P., Seibold, M. Modelling of dimensional changes during polymer-ceramic conversion for bulk component fabrication. J Mater Sci 27, 1053–1060 (1992). https://doi.org/10.1007/BF01197660

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01197660

Keywords

Navigation