Skip to main content
Log in

Transcrystallized interphase in thermoplastic composites

Part II Influence of interfacial stress, cooling rate, fibre properties and polymer molecular weight

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Application of stress at the interface between a fibre and a supercooled polymer melt results in the growth of a transcrystallized interphase, independent of fibre type and crystallization temperature. This is in direct contrast to results obtained from quiescent crystallization, where the occurrence of transcrystallization does depend on fibre type and crystallization temperature. The observed relation between stress-induced nucleation and transcrystallization leads us to propose that the origin of transcrystallization is actually stress-induced nucleation, due to the stresses caused by cooling two materials with a large difference in thermal expansion coefficient. In support of this, we present results showing that transcrystallization is dependent on the axial thermal expansion coefficient of the fibre, the sample cooling rate, the fibre length, the position along the fibre, and the polymer molecular weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. W. Clegg andA. A. Collyer “Mechanical Properties of Reinforced Thermoplastics” (Elsevier, London, 1986) p. 2.

    Google Scholar 

  2. F. G. Krautz,Journal of Society of Plastic Engineers 27 (1971) 74.

    CAS  Google Scholar 

  3. R. H. Burton andM. J. Folkes,Plast. Rubber Processing Appl. 3 (1983) 129.

    CAS  Google Scholar 

  4. J. L. Thomason andA. A. Van Rooyen,J. Mater. Sci. 27 (1992) 5.

    Article  Google Scholar 

  5. D. Campbell andM. M. Qayyum,J. Polym. Sci., Polym. Phys. Edn 18 (1980) 83.

    Article  CAS  Google Scholar 

  6. D. Campbell andM. M. Qayyum,J. Mater. Sci. 12 (1977) 2427.

    Article  CAS  Google Scholar 

  7. A. L. Disalvo,J. Polym. Sci., Polym. Lett. Edn 12 (1974) 509.

    Article  Google Scholar 

  8. A. M. Chatterjee, F. P. Price andS. Newman,J. Polym. Sci., Polym. Phys. Edn. 13 (1975) 2369.

    Article  CAS  Google Scholar 

  9. Idem andibid. 13 (1975) 2385.

    Article  CAS  Google Scholar 

  10. Idem andibid. 13 (1975) 2391.

    Article  CAS  Google Scholar 

  11. M. R. Kantz andR. D. Corneliussen,J. Polym. Sci., Polym. Lett. Edn 11 (1973) 285.

    Article  Google Scholar 

  12. B. S. Hsiao andE. J. H. Chen, in “Controlled Interphases in Composite Materials”, edited by H. Ishida (Elsevier, New York, 1990) p. 613.

    Google Scholar 

  13. T. Bessel andJ. B. Shortall,J. Mater. Sci. 10 (1975) 2035.

    Article  Google Scholar 

  14. P. Bussi andH. Ishida, in “Controlled Interphases in Composite Materials”, edited byH. Ishida (Elsevier, New York, 1990) p. 391.

    Google Scholar 

  15. T. HE andR. S. Porter,J. Appl. Polym. Sci. 35 (1988) 1945.

    Article  CAS  Google Scholar 

  16. J. A. Peacock, B. Fife, E. Nield andC. Y. Barlow, in “Composite Interfaces”, edited byH. Ishida andJ. L. Koenig (Elsevier, New York, 1986) p. 143.

    Google Scholar 

  17. D. Turnbull andB. Vonnegut,Ind. Engng Chem. 44 (1952) 1292.

    Article  CAS  Google Scholar 

  18. H. N. Beck andH. D. Ledbetter,J. Appl. Polym. Sci. 9 (1965) 2131.

    Article  Google Scholar 

  19. H. Schonhorn andF. W. Ryan,J. Polym. Sci. 6 (1968) 231.

    CAS  Google Scholar 

  20. R. H. Burton, T. M. Day andM. J. Folkes,Polym. Commun. 25 (1984) 361.

    CAS  Google Scholar 

  21. A. Misra, B. L. Deopura, S. F. Xavier, F. D. Hartley, andR. H. Peters,Agnew. Macromol. Chem. 113 (1983) 113.

    Article  CAS  Google Scholar 

  22. D. G. Gray,J. Polym. Sci., Polym. Lett. Edn 12 (1974) 645.

    Article  CAS  Google Scholar 

  23. T. Amano in “Flow Induced Crystallisation in Polymer Systems”, edited byR. L. Miller (Gordon and Breach, New York, 1979), p. 119.

    Google Scholar 

  24. M. KEATON, PhD thesis, Princeton University, Princeton, New Jersey (1971).

  25. T. W. Haas andB. Maxwell,Polym. Engng Sci. 9 (1969) 225.

    Article  CAS  Google Scholar 

  26. C. L. Choy, M. Ito, andR. S. Porter,J. Polym. Sci., Polym. Phys. Edn 21 (1983) 1427.

    Article  CAS  Google Scholar 

  27. M. C. Chien andR. A. Weiss,Polym. Engng Sci. 29 (1988) 6.

    Article  Google Scholar 

  28. R. H. Burton, M. J. Folkes, K. A. Narh andA. Keller,J. Mater. Sci. 18 (1983) 315.

    Article  CAS  Google Scholar 

  29. A. S. Vaughan andD. C. Bassett,Polymer 29 (1988) 1397.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomason, J.L., Van Rooyen, A.A. Transcrystallized interphase in thermoplastic composites. J Mater Sci 27, 897–907 (1992). https://doi.org/10.1007/BF01197639

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01197639

Keywords

Navigation