Skip to main content
Log in

Determination of total carbon and total organic carbon from volatile air pollutants

IV. — Comparison of Various Methods of Final Determination of CO2

  • Published:
Microchimica Acta Aims and scope Submit manuscript

Summary

The method developed based on the determination of TC and TOC in the form of the total amount of CO2 requires application of the proper techniques for the final determination of CO2. The possibility of using a stream of carrier gas at a convenient flow-rate for desorbing quantitatively CO2 concentrated on a molecular sieve permits use of a wide variety of known analytical techniques for the final determination of CO2. Various methods were compared on the basis of both absolute and calibration measurements. The absolute methods chosen were gravimetric (classical or an automated version based on application of a gravimetric automat and automatic recording balance), thermogravimetric analysis and coulometry. The calibration methods included thermal conductivity, the flame-ionization detector (after conversion of CO2 into methane) and infrared absorption. Usefulness of the methods was evaluated on the basis of comparative statistical analysis of experimental data with respect to precision (Snedecor'sF-test and Bartlett'sU 2-test) and accuracy (Student'st-test).

Zusammenfassung

Das entwickelte Verfahren zur Bestimmung des TC- und TOC-Gehaltes in Form der gesamten Menge CO2 erfordert die Anwendung geeigneter Analysentechniken zur Endbestimmung dieser Verbindung. Die Möglichkeit einer Desorption des am Molekularsieb angereicherten CO2 in einem Gasstrom mit geeignetem Durchfluß erlaubt zur Endbestimmung von CO2 die Anwendung einer Reihe verschiedener Analysenverfahren. Die Anwendbarkeit verschiedener, auf Absolutverfahren und auch auf relativen Messungen beruhender Methoden wurde vergleichend untersucht. Die folgenden Methoden zur CO2-Bestimmung wurden gewählt: die Gravimetrie (klassische oder automatisierte unter Einsatz eines Wägeautomaten und einer registrierenden Waage), die Thermogravimetrie und die Coulometrie. Von den relativen Methoden wurden die Thermokonduktometrie, der Flammenionisationsdetektor (nach Umsetzung von CO2 zu Methan) und das IR-Absorptionsmeßverfahren geprüft. Die Anwendbarkeit der Methoden wurde mit Hilfe statistischer Prüfverfahren beurteilt, wobei die Präzision (SnedecorsF-Test und BartlettsU 2-Test) und die Genauigkeit (Studentst-Test) der erhaltenen Analysenwerte verglichen wurden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Zeller and S. C. Pattacini, Perkin-Elmer IR Bull.14, 7 (1973).

    Google Scholar 

  2. J. R. Comberiati, Analyt. Chemistry43, 1497 (1971).

    Google Scholar 

  3. P. D. Goulden, Water Res.10, 487 (1976).

    Google Scholar 

  4. P. D. Goulden and P. Brooksbank, Analyt. Chemistry47, 1943 (1975).

    Google Scholar 

  5. T. J. Kehoe, Anal. Instrum.14, 43 (1976).

    Google Scholar 

  6. R. H. Jones and A. F. Dageforde, ISA Transactions7, 267 (1968).

    Google Scholar 

  7. E. R. Rüssel, Analyt. Chim. Acta88, 171 (1977).

    Google Scholar 

  8. G. J. Pearman, Tellus29, 171 (1977).

    Google Scholar 

  9. R. Syrjala, Ind. Res.1977 (June), 81.

  10. L. L. Hiser, D. S. Tarazi, C. A. Boldt, and O. Saenz Jr., Int. Lab.1971 (Jan./Feb.), 51.

  11. G. Cauwet, Chem. Geol.16, 59 (1975).

    Google Scholar 

  12. F. Ehrenberger, Z. analyt. Chem.267, 17 (1973).

    Google Scholar 

  13. F. Ehrenberger, Z. Wasser- Abwasser-Forsch.8, 75 (1975).

    Google Scholar 

  14. D. A. J. Murray, D. Povoledo, and R. V. Schmidt, ASTM Spec. Tech. Publ.573, 391 (1975).

    Google Scholar 

  15. R. Gormley, Lab. Pract.25, 761 (1976).

    Google Scholar 

  16. H. Miyagi, K. Kawazoe, T. Kamo, Y. Takata, Y. Arikawa, and K. Sakai, Japan Analyst25, 146 (1976).

    Google Scholar 

  17. B. T. Croll, Chem. Ind., London1972, 386.

  18. B. T. Croll, Prog. Wat. Technol.6, 149 (1974).

    Google Scholar 

  19. F. R. Cropper, D. M. Heinekey, and A. Westwell, Analyst92, 436 (1967).

    Google Scholar 

  20. Y. Takahashi, R. T. Moore, and J. R. Joyce, Am. Lab.4, 31 (1972).

    Google Scholar 

  21. N. R. McQuaker and T. Fung, Analyt. Chemistry47, 1435 (1975).

    Google Scholar 

  22. R. Briggs, J. W. Schofield, and P. A. Gorton, Wat. Pollut. Contr.1, 47 (1976).

    Google Scholar 

  23. R. L. Chandler, J. C. O'Shaughnessy, and F. C. Blanc, J. Wat. Pollut. Contr. Fed.48, 2791 (1976).

    Google Scholar 

  24. W. Dyck, J. C. Pelchat, and G. A. Meilleur, Geol. Surv. Can., Paper 75–34 (1976).

  25. L. M. Games and J. M. Hayes, Analyt. Chemistry48, 130 (1976).

    Google Scholar 

  26. E. E. Hughes and W. D. Dorko, Analyt. Chemistry40, 750 (1968).

    Google Scholar 

  27. E. E. Hughes and W. D. Dorko, Analyt. Chemistry40, 866 (1968).

    Google Scholar 

  28. K. Sugino, H. Kitamura, and H. Obata, Japan Analyst23, 260 (1974).

    Google Scholar 

  29. H. Malissa, H. Puxbaum, and E. Pell, Z. analyt. Chem.282, 109 (1976).

    Google Scholar 

  30. J. Holm-Jensen, Scand. J. Clin. Lab. Invest.36, 493 (1976).

    Google Scholar 

  31. W. Stuck, Microchem. J.10, 202 (1966).

    Google Scholar 

  32. D. G. Willetts, A. E. Hey, X. V. M. Snaddon, and J. Cope, Prog. Wat. Technol.6, 1 (1974).

    Google Scholar 

  33. G. Schierjott, H. Bleier, and H. Malissa, Vom Wasser39, 1 (1972).

    Google Scholar 

  34. G. Martinelli, Termotecnica21, 558 (1967).

    Google Scholar 

  35. M. P. Korsh, Zavodsk. Lab.28, 1191 (1962).

    Google Scholar 

  36. E. Scarano and C. Calcagno, Analyt. Chemistry45, 1055 (1975).

    Google Scholar 

  37. J. P. Lodge, E. R. Frank, and J. Ferguson, Analyt. Chemistry34, 702 (1962).

    Google Scholar 

  38. D. Fraisse and R. Levy, Bull. soc. chim. France1968, 445.

  39. D. Fraisse, Talanta18, 1011 (1971).

    Google Scholar 

  40. R. Levy, Bull. soc. chim. France1968, 2173.

  41. T. K. Khamrakulov, I. I. Kudratov, and V. I. Shlyakhov, Zavodsk. Lab.43, 1436 (1977).

    Google Scholar 

  42. J. Pempkowiak, Chemia Morza1, 107 (1974).

    Google Scholar 

  43. J. Sverak, Mikrochim. Acta [Wien]1959, 909.

  44. J. W. Loveland, R. W. Adams, H. H. King Jr., F. A. Nowak, and L. J. Cali, Analyt. Chemistry31, 1008 (1959).

    Google Scholar 

  45. M. Nashiro and T. Yarita, Japan Analyst24, 390 (1975).

    Google Scholar 

  46. A. D. Semenov, V. G. Soier, V. A. Bryzgal'o, and L. S. Kosmenko, Z. analyt. Chim.31, 2030 (1976).

    Google Scholar 

  47. W. Merz, Am. Lab.1976 (Dec), 1.

  48. W. Skorupski, Ochrona Powietrza5, 23 (1971).

    Google Scholar 

  49. P. Lepsi and B. Skalicka, Chemicky Prum.26, 294 (1976).

    Google Scholar 

  50. Ch. Tröltzsch, Chem. Anal. (Warsaw)22, 51 (1977).

    Google Scholar 

  51. E. N. Bukharkin, Zavodsk. Lab.42, 279 (1976).

    Google Scholar 

  52. M. Le Guyader, G. Dorange, and B. Bariou, Bull. soc. chim. France1974, 2775.

  53. F. Scholl, Ziegelindustrie15, 843 (1962); Analyt. Chemistry36, 139R (1964).

    Google Scholar 

  54. Polish Pat. No. 39709.

  55. M. E. Stephenson, B. E. Cabrera, and F. M. D'Itri, Environ. Sci. Technol.5, 799 (1971).

    Google Scholar 

  56. S. Zima, Z. Sliepcevic, and Z. Stefanac, Croat. Chem. Acta47, 611 (1975).

    Google Scholar 

  57. E. Kozlowski and J. Namieśnik, Mikrochim. Acta [Wien]1978 II, 435.

    Google Scholar 

  58. E. Kozlowski and J. Namieśnik, Mikrochim. Acta [Wien]1978 II, 473.

    Google Scholar 

  59. E. Kozlowski and J. Namieśnik, Mikrochim. Acta [Wien]1979 I, 1.

    Google Scholar 

  60. B. Kobylinska-Mazurek and E. Kozlowski, Mikrochim. Acta [Wien]1978 I, 137.

    Google Scholar 

  61. E. Koztowski, Zh. Analit. Khim.33, 827 (1978). 62 Polish Pat. No. 90387.

    Google Scholar 

  62. R. L. Stone and H. F. Frase, Analyt. Chemistry29, 1273 (1957).

    Google Scholar 

  63. D. Schultze, Termiczna naliza róznicowa, Warsaw: PWN (1974).

    Google Scholar 

  64. K. Eckschlager, Błedy w analizie chemicznej, Warsaw: PWN (1974).

    Google Scholar 

  65. J. Czermiński, A. Iwasiewicz, Z. Paszek, and A. Sikorski, Metody statystyczne w doświadczalnictwie chemicznym, Warsaw: PWN (1974).

    Google Scholar 

  66. G. Kainz and E. Wachberger, Microchem. J.12, 584 (1967).

    Google Scholar 

  67. R. K. Patterson, Analyt. Chemistry45, 605 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozlowski, E., Namieśnik, J. Determination of total carbon and total organic carbon from volatile air pollutants. Mikrochim Acta 71, 317–329 (1979). https://doi.org/10.1007/BF01197402

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01197402

Keywords

Navigation