Skip to main content
Log in

Determination of total carbon and total organic carbon from volatile air pollutants. Part II

Specific oxidation of carbon monoxide in the course of collection of air samples

  • Published:
Microchimica Acta Aims and scope Submit manuscript

Summary

The possibility of specific removal of carbon monoxide from a stream of air in the presence of vapours of volatile organic compounds was investigated. Weighed samples of oxalic acid were pyrolyzed to obtain standard mixtures of CO with air. Carbon monoxide present in the stream of air (at the flow rate of 700 cm3/ min) is quantitatively oxidized to CO2 by a layer of the Körbl catalyst (diameter=12 mm, length=35 mm) heated to 90° C. The CO2 formed can be specifically bound by a heated layer of ascarite46. On the basis of model experiments it was concluded that under the conditions described in the paper the degree of oxidation of 16 various organic compounds ranged from 0.7 to 8.7%. Thus, the developed method can be applied as a mean of practically specific removal of CO from a stream of analyzed air in the course of determination of total organic carbon (TOC).

Zusammenfassung

Die Möglichkeit einer spezifischen Entfernung von Kohlenoxid neben Dämpfen flüchtiger, organischer Verbindungen aus dem Luftstrom wurde untersucht. Zur Herstellung von CO-Luftstandardgemischen dienten gewogene Mengen Oxalsäure, die thermisch zersetzt wurden. Das im Luftstrom (700 cm3/Minute) anwesende CO wird an einer auf 90° C erhitzten Körblkatalysatorschicht von 35 mm Länge und 12 mm Durchmesser quantitativ zu Kohlendioxid oxydiert, das dann an einer erhitzten Ascariteschicht46 spezifisch gebunden wird. Bei Modellversuchen mit 16 verschiedenen organischen Verbindungen wurde festgestellt, daß der Oxydationsgrad unter den angegebenen Bedingungen 0,7–8,7% beträgt. Das entwickelte Verfahren kann somit zur praktisch spezifischen Entfernung von Kohlenoxid aus dem analysierten Luftstrom bei der Bestimmung des TOC-Gehaltes aus flüchtigen, organischen Verunreinigungen nach ihrer Oxydation Anwendung finden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Lawther, Brit. Med. Bull.31, 256 (1975).

    Google Scholar 

  2. M. Haeberle, Chemieunterricht7, 4 (1976).

    Google Scholar 

  3. R. Bouscaren and P. Detrie, Tech. Mod.68, 63 (1976).

    Google Scholar 

  4. H. Cnobloch, H. Nischik, and F. von Sturm, J. Electroanal. Chem.75, 747 (1977).

    Google Scholar 

  5. H. J. Van de Wiel, Meßtech. Autom., Int. Kongr., Kongreßvortr. 52 (1974).

  6. J. Satish and H. U. Wanner, Soz. —Praeventivmed.21, 124 (1976).

    Google Scholar 

  7. W. Seiler and H. Zankl, Environ. Biogeochem.1, 25 (1976).

    Google Scholar 

  8. S. B. Levitt and D. P. Chock, J. Air Pollut. Contr. Assoc.26, 1091 (1976).

    Google Scholar 

  9. J. Wojciechowski, Ochrona powietrza5, 25 (1971).

    Google Scholar 

  10. H. U. Wanner, A. Deuber, J. Satish, M. Meier, and H. Sommer, Atmos. Pollut., Proc. Int. Colloq. 99 (1976).

  11. L. Tuffert, J. Lebbe, and P. Chovin, Z. Praeventivmed.11, 134 (1966).

    Google Scholar 

  12. A. Fensom, Lab. Pract.20, 49 (1971); Anal. Abstr.21 3819 (1971).

    Google Scholar 

  13. R. Syrjala, Ind. Res.1977, 81.

  14. M. V. Zeller and S. C. Pattacini, Perkin-Elmer IR Bull.14, 7 (1973).

    Google Scholar 

  15. J. R. Comberiati, Analyt. Chemistry43, 1497 (1971).

    Google Scholar 

  16. J. R. Duncan, Ann. Ind. Air Pollut. Contr. Conf., Proc.3, 462 (1973).

    Google Scholar 

  17. G. Schunck, Dechema-Monogr.80, 753 (1976).

    Google Scholar 

  18. J. R. Stetter, D. R. Rutt, and K. F. Blurton, Analyt. Chemistry48, 924 (1976).

    Google Scholar 

  19. A. B. La Conti and M. J. R. Maget, J. Electrochem. Soc.118, 506 (1971).

    Google Scholar 

  20. J. A. Rubiner, M. Yu. Sultanov, and M. Z. Bielen'kij, Zav. Lab.36, 1199 (1970).

    Google Scholar 

  21. J. Adamczyk and S. Kasprowski, Chemik29, 130 (1976).

    Google Scholar 

  22. J. C. Bossart, Ind. Res.1976, 96.

  23. W. B. Heaton and J. T. Wenthworth, Analyt. Chemistry31, 349 (1959).

    Google Scholar 

  24. M. P. Korš, Zav. Lab.28, 1191 (1962).

    Google Scholar 

  25. W. B. Innes and A. J. Andreatch, Environ. Sci. Technol.4, 143 (1970).

    Google Scholar 

  26. S. Tsuneo, Japan Analyst18, 189 (1969); Analyt. Abstr.19, 2152 (1972).

    Google Scholar 

  27. T. K. Charmakulov and D. M. Ivanicky, Tr. Sredneaz. regionaln. i-i. gidrometeorol. in-t.,35, 182 (1975); Ref. Z.15, 151 257 (1976).

    Google Scholar 

  28. Y. Fujita, T. Shiono, and K. Shirna, Japan Analyst19, 1264 (1970); Analyt. Abstr.22, 2750 (1972).

    Google Scholar 

  29. G. Martinelli, Termotecnica21, 558 (1967); Analyt. Chemistry43, 9 R (1971).

    Google Scholar 

  30. D. A. Levaggi and M. Feldstein, Amer. Ind. Hyg. Assoc. J.25, 309 (1964).

    Google Scholar 

  31. Z. Burianec and J. Burianova, Coll. Czechoslov. Chemic. Commun.28, 2895 (1963).

    Google Scholar 

  32. R. Bock and B. Bockholt, Z. analyt. Chem.260, 274 (1972).

    Google Scholar 

  33. J. L. Lambert and R. E. Wiens, Analyt. Chemistry46, 929 (1974).

    Google Scholar 

  34. S. H. Mehdi and A. Corsini, Talanta24, 291 (1977).

    Google Scholar 

  35. P. Lepsi and B. Skalicka, Chemicky Prum.26, 294 (1976).

    Google Scholar 

  36. H. G. McAdie, Termochim. Acta18, 3 (1977).

    Google Scholar 

  37. D. H. Bollman and D. M. Mortimore, J. Chromatogr. Sci.10, 523 (1972).

    Google Scholar 

  38. R. J. Jerman and L. R. Carpenter, J. Gas Chromatogr.6, 298 (1968).

    Google Scholar 

  39. E. L. Obermiller and G. O. Charlier, J. Gas Chromatogr.6, 446 (1968).

    Google Scholar 

  40. S. A. Volkov and E. T. Rastjannikov, Gig. Sanit.10, 62 (1973).

    Google Scholar 

  41. K. Porter and D. H. Volman, Analyt. Chemistry34, 748 (1962).

    Google Scholar 

  42. A. P. Altshuller, S. L. Kopczyński, W. A. Lonneman, T. L. Becker, and R. Slater, Environ. Sci. Technol.1, 899 (1967).

    Google Scholar 

  43. A. K. Ghosh, D. P. Rajwer, P. K. Bandyopadhay, and S. K. Ghosh, J. Chromatography117, 29 (1976).

    Google Scholar 

  44. D. W. Stevens, ASTM Spec. Tech. Publ.555, 88 (1974).

    Google Scholar 

  45. J. Körbl, Coll. Czechoslov. Chemic. Commun.20, 948 (1955).

    Google Scholar 

  46. E. Kozlowski and J. Namieśnik, Mikrochim. Acta [Wien],1978 II, 435.

    Google Scholar 

  47. E. Kozłowski, Chem. Anal.19, 99 (1974).

    Google Scholar 

  48. T. Mitsui, O. Yammamoto, and K. Yoshikawa, Mikrochim. Acta [Wien]1961, 521.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozlowski, E., Namieśnik, J. Determination of total carbon and total organic carbon from volatile air pollutants. Part II. Mikrochim Acta 70, 473–484 (1978). https://doi.org/10.1007/BF01197099

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01197099

Keywords

Navigation