Skip to main content
Log in

Determination of nanogram quantities of uranium by pulsed-laser fluorometry

Bestimmung von Nanogramm-Mengen Uran mit Hilfe eines Laser-Fluorometers

  • Published:
Microchimica Acta Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

A versatile, direct method for the determination of trace amounts of uranium in solution has been developed utilizing pulsed-laser fluorometry and a pyrophosphate fluorescence enhancing reagent. Measurements with a 2–3% relative standard deviation and accurate to better than 1% have been obtained in the 0.01 to 4μg U/g range. The detection limit is 0.005 ng uranium. Time required per determination is 6 min. A special feature of the method is the use of a standard addition technique to eliminate sample matrix effects. The effects of temperature, acidity, reagent impurity and anionic impurities have been studied.

Zusammenfassung

Eine Direktmethode zur Bestimmung von Uranspuren in Lösungen mit Hilfe der Laser-Fluorometrie und eines fluoreszenz-anregenden Pyrophosphates wurde entwickelt. Die Messungen erfolgen mit einer rel. Standardabweichung von 2–3% und einer Genauigkeit besser als 1% bei Mengen von 0,01–4μg U/g. Die Nachweisgrenze beträgt 0,005 ng U. Eine Bestimmung dauert 6 min. Um Matrix-Effekte zu vermeiden, verwendet man die Standard-Zusatz-Technik. Der Einfluß der Temperatur, der Acidität und etwaiger Verunreinigungen wurde untersucht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. L. Booman and J. E. Rein, in I. M. Kolthoff and P. J. Elving (eds.), Treatise on Analytical Chemistry, Part II, Analytical Chemistry of the Elements, New York: Wiley. 1959. Vol. 9, p. 102.

    Google Scholar 

  2. Ref. 1, p. 111.

  3. Ref. 1, p. 102.

  4. G. R. Price, R. J. Ferretti, and S. Schwartz, Analyt. Chemistry25, 322 (1953).

    Google Scholar 

  5. F. A. Centanni, A. M. Ross, and M. A. DeSesa, Analyt. Chemistry28, 1651 (1956).

    Google Scholar 

  6. J. E. Strain, U. S. Dept. of Energy Rep., ORNL/TM-6431 (July 1978).

  7. Savannah River Plant, Analytical Procedure (unpublished), 2 SP 40. 3 a (January 1978).

  8. R. J. McElhaney, J. D. Caylor, S. H. Cole, T. L. Futrell, and V. M. Giles, U. S. Dept. of Energy Rep., Y-2111 (March 1978).

  9. C. J. Rodden (ed.), U. S. At. Energy Comm. Rep., TID-7029 (2nd Ed.), 1972, p. 232.

  10. J. C. Robbins, Field Technique for the Measurement of Uranium in Natural Waters, CIM Bulletin 793 (May 1978) 61–67.

  11. W. Campen and K. Bachmann, Mikrochim. Acta [Wien]1979 II, 159.

    Google Scholar 

  12. L. E. White, U. S. Dept. of Energy Rep., Y-2205 (May 1980).

  13. A. C. Zook and L. H. Collins, American Nuclear Society Topical Meeting, Nov. 26–30, 1979, published in NBS Special Publication 582, June 1980, p. 147.

  14. Scintrex Instruction Manual, UA-3 Uranium Analyzer, Scintrex, Concord, Ontario, Canada, August 1978.

  15. J. C. Robbins and J. D. Kinrade, Canadian Patent 10564726 (1979).

  16. Ref. 1, p. 62.

  17. Ref. 1, p. 61.

  18. R. G. Milkey, Analyt. Chemistry26, 1800 (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zook, A.C., Collins, L.H. & Pietri, C.E. Determination of nanogram quantities of uranium by pulsed-laser fluorometry. Mikrochim Acta 76, 457–468 (1981). https://doi.org/10.1007/BF01196964

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01196964

Keywords

Navigation