Skip to main content
Log in

Processes taking place in the graphite tube: Anion and matrix effects in atomic absorption spectrometry. II. Determination of mercury

Reaktionen im Graphitrohr: Anionen- und Matrix-Effekte bei der Atom-Absorptions-Spektrometrie. II. Bestimmung von Quecksilber

  • Published:
Microchimica Acta Aims and scope Submit manuscript

Summary

The atomic-absorption behaviour of different mercury compounds in the graphite tube was investigated. It was established that in the case of water-soluble volatile mercury compounds (nitrate, chloride) there is a considerable mercury loss even during the drying of the drop. The mercury can be determined, however, in the form of colloidal mercury sulphide atca. 200° C and with atomization at a relatively low temperature. Some interferences limit the use of the method in practice (compounds evaporating together with the mercury, presence of other metals producing sulphide precipitates) but the use of mercury dithizonate overcomes these limitations. The method was applied for determination of the mercury content of waste water and waste water sludge.

Zusammenfassung

Das Verhalten verschiedener Quecksilber-Verbindungen im Graphitrohr bei der Bestimmung der Atomabsorption wurde untersucht. Bei wasserlöslichen, flüchtigen Quecksilberverbindungen (Nitrat, Chlorid) tritt schon bei dem Eintrocknen des Tropfens ein erheblicher Quecksilberverlust auf. Quecksilber kann aber in Form des kolloidalen Quecksilbersulfids bei ca. 200° C und Versprühung bei relativ niedriger Temperatur bestimmt werden. Einige Störungen begrenzen die Verwendbarkeit des Verfahrens in der Praxis (mit Quecksilber flüchtige Verbindungen, Anwesenheit anderer Metalle als Sulfide), aber die Verwendung von Quecksilber-Dithizonat beseitigt diese Störungen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Welz, Atom-Absorptions-Spektroskopie. Weinheim/Bergstraße: Verlag Chemie. 1972.

    Google Scholar 

  2. E. G. Harsányi, L. Polos, L. Bezur, and E. Pungor, Magy. Kérn. Foly.79, 471 (1973).

    Google Scholar 

  3. E. G. Harsányi, L. Pólos, L. Bezur, and E. Pungor, Hung. Sci. Instr.38, 13 (1976).

    Google Scholar 

  4. S. Dojan and W. Haerdi, Analyt. Chim. Acta76, 345 (1975).

    Google Scholar 

  5. P. E. Trujillo and E. E. Campbell, Analyt. Chemistry47, 1629 (1975).

    Google Scholar 

  6. M. P. Newton and D. G. Davis, Analyt. Lett.8, 729 (1975).

    Google Scholar 

  7. K. Nakano, T. Takada, and K. Fujita, Chem. Lett. (Chem. Soc. Japan) 1979, 869.

  8. Z. Slovák, Analyt. Chim. Acta110, 301 (1979).

    Google Scholar 

  9. A. Halász and K. Polyák, Acta Chim. Acad. Sci. Hung.91, 26 (1976).

    Google Scholar 

  10. E. Gegus, J. Kreiter, L. Méray, and J. Inczédy, Acta. Chim. Acad. Sei. Hung.100, 211 (1979);101, 347 (1979).

    Google Scholar 

  11. O. G. Koch and G. A. Koch-Dedic, Handbuch der Spurenanalyse. Berlin-Heidelberg-New York: Springer. 1974. Bd. II. pp. 759–773.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halász, A., Polyák, K. & Gegus, E. Processes taking place in the graphite tube: Anion and matrix effects in atomic absorption spectrometry. II. Determination of mercury. Mikrochim Acta 76, 229–238 (1981). https://doi.org/10.1007/BF01196739

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01196739

Keywords

Navigation