Skip to main content
Log in

Peripheral spectrum of positive quasi-compact operators onC 0(X)

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

LetX be a locally compact space, andT, a quasi-compact positive operator onC 0(X), with positive spectral radius,r. Then the peripheral spectrum ofT is a finite set of poles containingr, and the residue of the resolvent ofT at each peripheral pole is of finite rank. Using the concept of closed absorbing set, we develop an iterative process that gives the order,p, ofr, some special bases of the algebraic eigenspaces ker(T-r) p and ker(T *-r)p, and finally the dimension of the algebraic eigenspace associated to each peripheral pole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conze J.-P., Raugi A. Fonctions harmoniques pour un opérateur de transition et applications. Bull. Soc. Math. France, 118, 1990, p. 273–310.

    Google Scholar 

  2. Dunford N., Schwartz J.-T. Linear operator, Part. I Pure and Applied Mathematics. Vol. VII. Interscience.

  3. Hennion H. Sur un théorème spectral et son application aux noyaux lipchitziens Proceeding of the A.M.S, vol. 118 (1993) No. 2, pp. 627–634.

    Google Scholar 

  4. Hennion H. Quasi-compacité. Cas des noyaux lipschitziens et des noyaux markoviens Séminaires de Probabilités de Rennes. I.R.M.A.R. (1995).

  5. Hervé L. Etude d'opérateurs quasi-compacts et positifs. Applications aux opérateurs de transfert Ann. Inst. H. Poincaré, probab. et Statist., vol. 30, N. 3, 1994, p. 437–466.

    Google Scholar 

  6. Jamison B. Asymptotic behaviour of successive iterates of continuous functions under a Markov operator. J. of Math., Analysis and Applications, T. 9, 1964, 303–314.

    Google Scholar 

  7. R-J Jang-Lewis, H. D. Victory, Jr. On nonnegative solvability of linear operator equations Linear Algebra Appl. 165, 197–228 (1992).

    Google Scholar 

  8. R-J Jang-Lewis, H. D. Victory, Jr. On nonnegative solvability of linear operator equations Integral equation and operator theory, Vol. 18 (1994).

  9. Kakutani S., Yosida K. Operator-theoretical treatment of Markoff process and mean ergodic theorem. Ann. of Math. (2) 42, 188–228 (1941).

    Google Scholar 

  10. Krengel U. Ergodic Theorems. de Gruyter Studies in Mathematics, de Gruyter, Berlin. New York, 1985.

    Google Scholar 

  11. Kryloff N., Bogoliouboff N. Sur les propriétés en chaîne. C. R. Acad. Sci., Paris,204, 1386–1388 (1937).

    Google Scholar 

  12. Lin M. Quasi-compactness and uniform ergodicity of positive operators. Israel Journal of Mathematics, 29, 309–311 (1978).

    Google Scholar 

  13. Luxemburg W. A. J., Zaanen A. C. Notes on Banach function spaces. XI Indag. Math., 26, 507–518 (1964).

    Google Scholar 

  14. Luxemburg W. A. J., Zaanen A. C. Notes on Banach function spaces. XIV, Indag. Math., 27, 230–248 (1965).

    Google Scholar 

  15. Neveu J. Bases mathématiques du calcul des probabilités. Masson, Paris (1964).

    Google Scholar 

  16. Niiro F. Sawashima I. On spectral properties of positive irreductible operators in an arbitrary Banach-lattice and problems of H.H. Schaefer Sci. Papers College General Educ. Univ. Tokyo 16, 145–183 (1966).

    Google Scholar 

  17. Norman M.-F. Markov processes and learning models Academic Press, 1972.

  18. Raugi A. Théorie spectrale d'un opérateur de transition sur un espace métrique compact Ann. Inst. H. Poincaré, vol. 28, N. 2, 1992, p. 281–309.

    Google Scholar 

  19. Rothblum U. G. Algebraic eigenspaces of nonnegative matrices Linear Algebra Appl. 12, 281–292 (1975).

    Google Scholar 

  20. Schaefer H. Topological vector spaces New York, MacMillan Series in Advanced Mathematics and Theoretical Physics, 1966.

  21. Schaefer H. Banach Lattices and positive operators Springer-Verlag, Berlin Heidelberg New York 1974.

    Google Scholar 

  22. H. D. Victory, Jr. On linear integral operators with nonnegative kernels J. Math. Anal. Appl. 89, 420–441 (1982).

    Google Scholar 

  23. H. D. Victory, Jr. The structure of the algebraic eigenspace to the spectral radius of eventually compact, nonnegative integral operators J. Math. Anal. Appl. 90, 484–516 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loïc, H. Peripheral spectrum of positive quasi-compact operators onC 0(X). Integr equ oper theory 32, 199–215 (1998). https://doi.org/10.1007/BF01196518

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01196518

AMS Subject Classification

Navigation