Skip to main content
Log in

Spectrophotometric determination of cobalt with chlorindazon DS

  • Published:
Microchimica Acta Aims and scope Submit manuscript

Summary

The optimum experimental conditions for the spectrophotometric determination of trace amounts of cobalt(II) in aqueous solutions using chlorindazon DS were assessed and the procedure was described. A 5.5-fold molar excess of the reagent is required for complete complex formation. Heating at 60° for 20 min or at 100° for 5 min is required for complete colour development. The system conforms to Beer's law; the optimum range for a 1-cm cell is 0.4–1.4 ppm of cobalt, determined with a relative standard deviation of 0.5%. The molar absorptivity at 638 nm is 3.25×104l mole−1 cm−1. Cyanide seriously interferes with the determination. A reaction ratio of 1 to 3 for cobalt to the reagent has been deduced from spectrophotometric data. This method was utilized to determine cobalt in a steel sample.

Zusammenfassung

Die optimalen Bedingungen für die spektrophotometrische Bestimmung von Kobalt(II)-Spuren in wäßrigen Lösungen mit Chlorindazon DS wurden ermittelt und die Arbeitsweise angegeben. Ein 5,5-facher molarer Überschuß ist für die vollständige Komplexbildung nötig. Zur endgültigen Farbentwicklung ist es nötig, 20 min auf 60° oder 5 min auf 100° zu erhitzen. Das Reaktionssystem entspricht dem Beerschen Gesetz. Die optimale Menge bei Verwendung von 1-cm-Küvetten ist 0,4–1,4 ppm Co, die relative Standardabweichung 0,5%. Die molare Extinktion bei 638 nm beträgt 3,25·104l·mol−1·cm−1. Cyanid stört stark. Kobalt setzt sich mit dem Reagens im Verhältnis 1∶3 um. Das Verfahren wurde zur Co-Bestimmung in Stahlproben verwendet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. F. Boltz and M. G. Mellon, Analyt. Chemistry48, 216 R (1976) and other biennial reviews published previously in the same journal.

    Google Scholar 

  2. A. Garcia De Torres, M. Valcarcel, and F. Pino-Perez, Analyt. Chim. Acta68 (2), 466 (1974).

    Google Scholar 

  3. R. Belcher, S. A. Ghonaim, and A. Townshend, Talanta21, 191 (1974).

    Google Scholar 

  4. S. Shibata, M. Furukawa, and E. Kamata, Analyt. Chim. Acta73, 107 (1974).

    Google Scholar 

  5. S. Shibata, M. Furukawa, and K. Goto, Talanta20, 426 (1973).

    Google Scholar 

  6. H. Schweppe, Z. analyt. Chem.244, 312 (1969).

    Google Scholar 

  7. D. Molch, H. Koenig, and E. Than, Z. Chemie, Lpz.14, 369 (1974);

    Google Scholar 

  8. Z. Chemie, Lpz.14, 408 (1974).

    Google Scholar 

  9. D. Molch, H. Koenig, and E. Than, Z. Chemie, Lpz.15, 361 (1975);

    Google Scholar 

  10. 15, 410 (1975).

    Google Scholar 

  11. G. F. Kirkbright, Talanta13, 6 (1966).

    Google Scholar 

  12. W. C. Vosburgh and G. R. Cooper, J. Amer. Chem. Soc.63, 437 (1941);

    Google Scholar 

  13. R. K. Gould and W. C. Vosburgh, J. Amer. Chem. Soc.64, 1630 (1942).

    Google Scholar 

  14. F. A. Cotton and G. Wilkinson, “Advanced Inorganic Chemistry”, 3rd ed., New York: Interscience. 1972; p. 878

    Google Scholar 

  15. F. A. Cotton and G. Wilkinson, “Advanced Inorganic Chemistry”, 3rd ed., New York: Interscience. 1972; p. 883.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cham, S.F., Lau, O.W. Spectrophotometric determination of cobalt with chlorindazon DS. Mikrochim Acta 71, 241–250 (1979). https://doi.org/10.1007/BF01196410

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01196410

Keywords

Navigation