Skip to main content
Log in

A survey of the eigenstructure properties of finite Hermitian Toeplitz matrices

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

This paper is concerned with a survey of the spectral properties of finite Hermitian Toeplitz matrices. It contains in particular a detailed analysis of the algebraic structure of the Toeplitz eignespaces and of the zero location properties of their related eignepolynomials. The theory of pseudo-Carathéodory and pseudo-lossless functions of finite index is shown to provide a function theoretic interpretation of the eigenvalues and eigenvectors of a Hermitian Teoplitz matrix; most known results in the field fit naturally into this fremework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Adamjan, D.Z. Arov, M. G. Krein, “Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur-Tagaki problem,” Math. USSR Sbornik, vol. 15, pp 31–73, 1971.

    Google Scholar 

  2. N.I. Akhiezer, “The classical moment problem,” Oliver and Boyd, London, 1965.

    Google Scholar 

  3. B.D.O. Anderson, J.B. Moore, “Algebraic structure of generalized positive real matrices,” SIAM J. Control, vol. 6, pp 615–624 1968.

    Google Scholar 

  4. A. Cantoni, P. Butler, “Eigenvalues and eigenvectors of centrosymmetric matrices,” Linear Algebra Appl., vol. 13, pp 275–288, 1976.

    Google Scholar 

  5. G.Caraynnis, C. Gueguen, “The factorial linear modelling: A Karhunen-Loeve approach to speech analysis”, Proc. Int. Conf. Acoustics, Speech, Signal processing, Philadelphia, pp 489–492, 1976.

  6. D.N. Clark, “Hankel forms, Toeplitz forms and meromorphic functions,” Trans. AMS, vol. 134, pp 109–116 1968.

    Google Scholar 

  7. G. Cybenko, “Moment problems and low rank Toeplitz approximations” Circuits, Systems and Signal. Processing, vol. 1, pp 345–366 1982.

    Google Scholar 

  8. G. Cybenko, “On the eigenstructure of Toeplitz matrices”, IEEE Trans. Acoust. Speech, Signal Processing, vol ASSP-32, pp918–920, 1984.

    Google Scholar 

  9. G. Cybenko, “Computing the minimum eigenvalue of a symmetric positive definite Toeplitz matrix” Siam J. Sci. Stat Comp., vol. 7, pp 123–131, 1986.

    Google Scholar 

  10. P.J. Davis, “Circulant matrices”, Wiley, New York, 1979.

    Google Scholar 

  11. P. Delsarte Y. Genin, “Spectral, properties of finite Toeplitz matrices” Proc. Int. Symp. Mathematical Theory of Networks and Systems”, Beer-Sheva, pp 194–213, 1983.

  12. P. Delsarte, Y. Genin, Y. Kamp, P. Van Dooren “Speech modelling and the trigonometric moment problem” Philips J. Research, vol. 37, pp 277–292, 1982.

    Google Scholar 

  13. P. Delsarte, Y. Genin, Y. Kamp, “Parametric Toeplitz systems,” Circuits, Systems, Signal Processing, vol. 3, pp 207–223, 1984.

    Google Scholar 

  14. P. Delsarte, Y. Genin, Y. Kamp, “Pseudo-Caratheodory functions and Hermitian Toeplitz matrices,” Philips J. Research, vol. 41, pp 1–54, 1986.

    Google Scholar 

  15. P. Delsarte, Y. Genin, Y. Kamp, “Pseudo-lossless functions with applications to the problem of locating the zeros of a polynomial”, IEEE Trans. Circuits and Systems, vol. CAS-32, pp 373–380, 1985.

    Google Scholar 

  16. P. Delsarte, Y. Genin, Y. Kamp, “Application of the index theory of pseudolossless functions to the Bistritz stability test”, Philips J. Research, vol. 39, pp 226–241 1984.

    Google Scholar 

  17. L. Y. Geronimus, “Orthogonal Polynomials”, Consultans bureau, New-York, 1961.

    Google Scholar 

  18. U. Grenander, G. Szego, “Toeplitz forms and their applications.”, Univ. of California Press, Berkeley, 1958.

    Google Scholar 

  19. R.M. Gray, “Toeplitz and circulant matrices”., Stanford Inf. Syst. Lab. Technical Report 6504-1, 1997.

  20. F.A. Grunbaum, “Eigenvectors of a Toeplitz matrix: discrete version of the prolate spheroidal wave functions,” SIAM J. Alg. Disc. Math., vol. 2, pp 136–141, 1981.

    Google Scholar 

  21. F. A. Grunbaum, “Toeplitz matrices commuting with tridiagonal matrices” Linear Algebra Appl., vol. 40, pp 25–36 1981.

    Google Scholar 

  22. C. Gueguen, “Linear prediction in the singular case and the stability of singular models” Proc Int. Conf. Acoustics, Speech, Signal Processing, Atlanta, pp. 881–885, 1981.

  23. Y.H. Hu, S. Y. Kung, “Computation of the minimum eigenvalue of a Toeplitz matrix by the Levinson algorithm” Proc. SPIE 25th International Conference, pp 40–45, Aug. 1980.

  24. S.Y. Kung, “A Toeplitz approximation method and some applications”, Proc. Int. Symp. Mathematical Theory Networks Systems, Santa-Monica, pp 262–266, 1981.

  25. I.I. Hirschman Jr., D.E. Hughes, “Extreme eigenvalues of Toeplitz operatiors,” Springer-Verlag, New-York, 1977.

    Google Scholar 

  26. M. Kac, W.L. Murdoch, G. Szego, “On the eigenvalues of certain Hermitian forms”, J. Rational Mechanics and Analysis, pp. 767–800, 1953.

  27. T. Kailath, “A view of three decades of linear filtering theory,” IEEE Trans. Information Theory, vol. IT-20, pp 145–181, 1974.

    Google Scholar 

  28. M.G. Krein, H. Langer, “Uber einige fortsetzungsprobleme die eng mit der theorie hermitescher operatoren im raume Π k zusammenhangen. I.Einige funktionenklassen and ihre darstellungen”, Math. Nachr., vol. 77, pp 187–236, 1977.

    Google Scholar 

  29. M.G. Krein, H. Langer, “Some propositions on analytic matrix functions related to the theory of operators in the space Π k ”, Acta Sci. Math., vol. 43, pp 181–205 1981.

    Google Scholar 

  30. I. S. Iohvidov, “Hankel and Toeplitz matrices and forms”, Birkhauser, Boston, 1982.

    Google Scholar 

  31. J. Makhoul, “On the eigenvectors of symmetric Toeplitz matrices”, IEEE Trans. Acoust., Speech Signal Processing, vol. ASSP-29, pp 868–872, 1981.

    Google Scholar 

  32. M. Marden, “Geometry of polynomials,” AMS Publ., Providence, 1966.

    Google Scholar 

  33. V.P. Pisarenko, “The retrieval of harmonics from a covariance function”, Geophys. J. R. Astr. Soc., vol. 33, pp 347–366, 1973.

    Google Scholar 

  34. Y. Oono, “Classical theory of network synthesis”, in IECE Japan, vol. 57, 10 & 12, 1974 and vol. 58, 1,2 & 3, 1975.

  35. Y. Oono, “Introduction to pseudo-positive-real functions”, Proc. Int. Symp. on Circuits and Systems pp 469–472, 1981.

  36. D. Slepian, “Prolate spheroidal wave functions, Fourier analysis and uncertainties. V: the discrete case”, Bell Syst. Tech. J., vol. 57, pp 1371–1430, 1978.

    Google Scholar 

  37. G. Szego, “Orthogonal polynomials”, AMS Colloquium Publ., vol. 23, New-York, 1959.

  38. H. Widom, “Toeplitz matrices”, in Studies in Real and Complex analysis, ed. by I. I. Hirschman Jr., Prentice-Hall, Englewood Cliffs, 1965.

    Google Scholar 

  39. A.S. Willsky, “Digital signal processing and control and estimation theory,” MIT Press, Cambridge, Mass. 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genin, Y. A survey of the eigenstructure properties of finite Hermitian Toeplitz matrices. Integr equ oper theory 10, 621–639 (1987). https://doi.org/10.1007/BF01195794

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01195794

Keywords

Navigation