Advertisement

Building pseudoprimes with a large number of prime factors

  • D. Guillaume
  • F. Morain
Article

Abstract

We extend the method due originally to Löh and Niebuhr for the generation of Carmichael numbers with a large number of prime factors to other classes of pseudoprimes, such as Williams's pseudoprimes and elliptic pseudoprimes. We exhibit also some new Dickson pseudoprimes as well as superstrong Dickson pseudoprimes.

Keywords

Carmichael numbers Pseudoprimes Lucas pseudoprimes Elliptic pseudoprimes Strong Dickson pseudoprimes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alford, W. R., Granville, A., Pomerance, C.: There are infinitely many Carmichael numbers. Ann. Math.139(3), 703–722 (May 1994)Google Scholar
  2. 2.
    Bedocchi, E.: Note on a conjecture on prime numbers. Rev. Math. Univ. Parma4(11), 229–236 (1985)Google Scholar
  3. 3.
    Brillhart, J., Lehmer, D. H., Selfridge, J. L.: New primality criteria and factorizations of 2m+-1. Math. Comp.29(130), 620–647 (1975)Google Scholar
  4. 4.
    Carmichael, R. D.: Note on a new number theory function. Bull AMSXVI, 232–238 (1910)Google Scholar
  5. 5.
    Carmichael, R. D.: On composite numbersP which satisfy the fermat congruence ap−1≡1 mod P. Am. Math. MonthlyXIX, 22–27 (1912)Google Scholar
  6. 6.
    Chernick, J.: On Fermat's simple theorem. Bull. AMS45, 269–274 (Apr. 1939)Google Scholar
  7. 7.
    Cohen, G. L., Hagis, Jr, P.: On the number of prime factors ofn if ø(n)¦(n−1). Nieuw Archief voor Wiskunde (3)XXVIII, 177–185 (1980)Google Scholar
  8. 8.
    Dickson, L. E.: The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group I. Ann. Math.11, 65–120 (1896)Google Scholar
  9. 9.
    Dubner, H.: A new method for producing large Carmichael numbers. Math. Comp.53(187), 411–414 (July 1989)Google Scholar
  10. 10.
    Erdös, P., Pomerance, C., Schmutz, E.: Carmichael's lambda function. Acta Arithmetica LVIII, 4, 363–385 (1991)Google Scholar
  11. 11.
    Giuga, G.: Su una presumbile proprietà caratteristica dei numeri primi. Ist. Lombardo Sci. Lett. Rend. Cl. Sci. Nat. 3,14(83), 511–528 (1950)Google Scholar
  12. 12.
    Gordon, D. M.: On the number of elliptic pseudoprimes. Math. Comp.52(185), 231–245 (Jan. 1989)Google Scholar
  13. 13.
    Gordon, D. M., Pomerance, C.: The distribution of Lucas and elliptic pseudoprimes. Math. Comp.57(196), 825–838 (Oct. 1991)Google Scholar
  14. 14.
    Guillaume, D., Morain, F.: Building Carmichael numbers with a large number of prime factors. Research Report LIX/RR/92/01, Ecole Polytechnique-LIX, Feb. 1992Google Scholar
  15. 15.
    Guillaume, D., Morain, F.: Building Carmichael numbers with a large number of prime factors and generalization to other numbers. Research Report 1741, INRIA, Aug. 1992Google Scholar
  16. 16.
    Jaeschke, G.: The Carmichael numbers to 1012. Math. Comp.55(191), 383–389 (July 1990)Google Scholar
  17. 17.
    Keller, W.: The Carmichael numbers to 1013. AMS Abstracts9, 328–329 (1988), Abstract 88T-11-150Google Scholar
  18. 18.
    Kishore, M.: On the number of district prime factors of n for which ø(n)¦n−1. Nieuw Archief voor Wiskunde (3)XXV, 48–53 (1977)Google Scholar
  19. 19.
    Kowol, G.: On strong Dickson pseudoprimes. AAECC3, 129–138 (1992)Google Scholar
  20. 20.
    Lausch, H., Nöbauer, W.: Algebra of polynomials. North Holland, Amsterdam 1973Google Scholar
  21. 21.
    Lehmer, D. H.: An extended theory of Lucas' functions. Ann. Math.31, 419–448 (1930). Series (2)Google Scholar
  22. 22.
    Lehmer, D. H.: On Euler's totient function. Bull. AMS38, 745–751 (1932)Google Scholar
  23. 23.
    Lidl, R., Mullen, G. L., Turnwald, G.: Dickson polynomials, vol. 65 of Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientific & Technical, 1993Google Scholar
  24. 24.
    Lidl, R., Müller, W. B.: Primality testing with Lucas functions. In: Auscrypt '92 (1992), vol. 718 of Lect. Notes in Computer Science, Berlin, Heidelberg, New York: Springer, pp. 539–542Google Scholar
  25. 25.
    Lidl, R., Müller, W. B., Oswald, A.: Some remarks on strong Fibonatci pseudoprimes. AAECC1, 59–65 (1990)Google Scholar
  26. 26.
    Lieuwens, E.: Do there exist composite numbersM for which kø(M)=M −1 holds? Nieuw Archief voor Wiskunde (3)XVIII, 165–169 (1970)Google Scholar
  27. 27.
    Löh, G.: Carmichael numbers with a large number of prime factors. AMS Abstracts9, 329. Abstract 88T-11-151 (1988)Google Scholar
  28. 28.
    Löh, G., Niebuhr, W.: Carmichael numbers with a large number of prime factors, II. AMS Abstracts10, 305 (1989), Abstract 89T-11-131Google Scholar
  29. 29.
    Nicolas, J.-L.: On highly composite numbers. In: Ramanujan revisited (1988). Andrews, G., Askey, R., Berndt, B., Ramanathan, K., Rankin, R. (eds.) New York, London: Academic Press, pp. 215–244Google Scholar
  30. 30.
    Pinch, R.: The Carmichael numbers to 1015. Math. Comp.61(203), 381–392 (July 1993)Google Scholar
  31. 31.
    Pinch, R.: The pseudoprimes up to 1013. Preprint, 1995Google Scholar
  32. 32.
    Pomerance, C., Selfridge, J. L., Wagstaff, Jr, S. S.: The pseudoprimes to 25.109. Math. Comp.35(151), 1003–1026 (1980)Google Scholar
  33. 33.
    Porto, A. D., Filipponi, P.: A probabilistic primality test based on the properties of certain generalized Lucas numbers. In: Advances in Cryptology — EUROCRYPT '88 (1988), Günther, C. G. (ed.), vol. 330 of Lect. Notes in Computer Science. Berlin, Heidelberg, New York, Springer, pp. 211–223Google Scholar
  34. 34.
    Ramanujan, S.: Highly composite numbers. Proc. London Math. Soc.2(14), 347–409 (1915)Google Scholar
  35. 35.
    Ribenboim, P.: The book of prime number records, 2nd ed. Berlin, Heidelberg, New York, Springer 1989Google Scholar
  36. 36.
    Riessei, H.: Prime numbers and computer methods for factorization, 2nd ed., vol. 57 of Progress in Mathematics. Basel: Birkhäuser 1985Google Scholar
  37. 37.
    Wagstaff, S. S. Jr: Large Carmichael numbers. Math. J. Okayama Univ.22, 33–41 (1980)Google Scholar
  38. 38.
    Williams, H. C.: On number analogous to the Carmichael numbers. Canadian Math. Bull.20(1), 133–143 (1977)Google Scholar
  39. 39.
    Woods, D., Huenemann, J.: Larger Carmichael numbers. Comp. Math. Appls.8(3), 215–216 (1982)Google Scholar
  40. 40.
    Yorinaga, M.: Numerical computation of Carmichael numbers. Math. Okayama University20(2), 151–163 (1978)Google Scholar
  41. 41.
    Yorinaga, M.: Carmichael numbers with many prime factors. J. Okayama Univ.22, 169–184 (1980)Google Scholar
  42. 42.
    Zhang, M.: Searching for large Carmichael numbers. Sichuan Daxue Xuebao, Dec. 1991. (to appear)Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • D. Guillaume
    • 1
  • F. Morain
    • 2
  1. 1.VélizyFrance
  2. 2.LIX, Laboratoire d'Informatique de l'Ecole Polytechnique Ecole PolytechniquePalaiseau CedexFrance

Personalised recommendations