Hereditarily extended properties, quasi-random graphs and not necessarily induced subgraphs


Recently much attention has been focused on the theory of quasi-random graph and hypergraph properties. The class of quasi-random graphs is defined by certain equivalent graph properties possessed by random graphs. We shall investigate propertiesP which do not imply quasi-randomnes for sequences (G n ) of graphs on their own, but do imply if they hold not only for the whole graphG n but also for every sufficiently large subgraph ofG n . Here the properties are strongly connected to countingnot necessarily induced subgraphs of a given type, while in a subsequent paper we shall investigate the properties connected with counting induced subgraphs.

This is a preview of subscription content, access via your institution.


  1. [1]

    B. Bollobás:Random Graphs, Academic Press, 1985.

  2. [2]

    F. R. K. Chung, R. L. Graham andR. M. Wilson: Quasi-random graphs,Combinatorica,9 (4), (1989), 345–362.

    Google Scholar 

  3. [3]

    F. R. K. Chung, R. Graham andR. L. Graham: Quasi-random hypergraphs,Random Structures and Algorithms,1 (1990), 105–124.

    Google Scholar 

  4. [4]

    F. R. K. Chung: Regularity lemmas for hypergraphs and quasi-randomness,Random Structures and Algorithms, Vol.2 (2) (1991), 241–252.

    Google Scholar 

  5. [5]

    F. R. K. Chung andR. L. Graham: Quasi-random set systems,Journal of the American Math. Society,4 (1) January, (1991), 151–196.

    Google Scholar 

  6. [6]

    F. R. K. Chung andR. L. Graham: Maximum cuts and quasi-random graphs,in Random Graphs, (Poznan Conf, 1989) Wiley-Intersci, Publ. vol 2, 23–33.

  7. [7]

    F. R. K. Chung andR. L. Graham: On hypergraphs having evenly distributed subhypergraphs, (in the Proc. Conf. Marseille-Luminy, 1990) Discrete Mathematics,111 (1–3) (1993), 125–129.

  8. [8]

    M. Dyer andA. Frieze: Computing the volume of convex bodies: a case where randomness provably helps, inProbabilistic Combinatorics and Its Applications (ed. Béla Bollobás), Proceedings of Symposia in Applied Mathematics, Vol. 44 (1992), 123–170.

  9. [9]

    P. Frankl, V. Rödl andR. M. Wilson: The number of submatrices of given type in an Hadamard matrix and related results,Journal of Combinatorial Theory, (B) 44 (3) (1988), 317–328.

    Google Scholar 

  10. [10]

    A. N. Kolmogorov: Three approaches to the quantitative definition of information,Problems Inform. Transmition,1 (1965), 1–7.

    Google Scholar 

  11. [11]

    J. Komlós, G. N. Sárközy andE. Szemerédi: Blow-up Lemma,Combinatorica,17 (1) (1997), 109–123.

    Google Scholar 

  12. [12]

    J. Komlós andM. Simonovits: Szemerédi Regularity lemma and its applications in Extremal Graph Theory, in:Paul Erdős is 80, II. Bolyai J. Math. Soc. 2, (1996), 295–352.

  13. [13]

    M. Simonovits andV. T. Sós: Szemerédi's Partition and quasi-randomness,Random Structures and Algorithms,2 (1991), 1–10.

    Google Scholar 

  14. [14]

    M. Simonovits andV. T. Sós: Hereditarily extended properties, quasi-random graphs and induced subgraphs, manuscript.

  15. [15]

    E. Szemerédi: On regular partitions of graphs,Problemes Combinatoires et Théorie des Graphes (ed. J. Bermond et al.), CNRS Paris, 1978, 399–401.

  16. [16]

    E. Szemerédi: On graphs containing no complete subgraphs with 4 vertices (in Hungarian)Mat. Lapok 23 (1972), 111–116.

    Google Scholar 

  17. [17]

    A. Thomason: Random graphs, strongly regular graphs and pseudo-random graphs, in:Surveys in Combinatorics, 1987 (Whitehead, ed.) LMS Lecture Notes Series 123, Cambridge Univ. Press, Cambridge, 1987, 173–196.

    Google Scholar 

  18. [18]

    A. Thomason: Pseudo-random graphs, in:Proceedings of Random graphs, Poznan, 1985, (M. Karonski, ed.);Annals of Discrete Math.,33 (1987), 307–331.

  19. [19]

    A. Thomason: A disproof of a theorem of Erdős in Ramsey theory,J. London Math. Soc,39 (2) (1989), 246–255.

    Google Scholar 

Download references

Author information



Additional information

Dedicated to the memory of Paul Erdős

Research supported by OTKA N1909.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Simonovits, M., Sós, V.T. Hereditarily extended properties, quasi-random graphs and not necessarily induced subgraphs. Combinatorica 17, 577–596 (1997).

Download citation

Mathematics Subject Classification (1991)

  • 05C80