, Volume 17, Issue 4, pp 459–467

A variant of the classical Ramsey problem

  • Paul Erdős
  • András Gyárfás

DOI: 10.1007/BF01195000

Cite this article as:
Erdős, P. & Gyárfás, A. Combinatorica (1997) 17: 459. doi:10.1007/BF01195000


For fixed integersp, q an edge coloring of a complete graphK is called a (p, q)-coloring if the edges of everyKpK are colored with at leastq distinct colors. Clearly, (p, 2)-colorings are the classical Ramsey colorings without monochromaticKp subgraphs. Letf(n, p, q) be the minimum number of colors needed for a (p, q)-coloring ofKn. We use the Local Lemma to give a general upper bound forf. We determine for everyp the smallestq for whichf(n, p, q) is linear inn and the smallestq for whichf(n, p, q) is quadratic inn. We show that certain special cases of the problem closely relate to Turán type hypergraph problems introduced by Brown, Erdős and T. Sós. Other cases lead to problems concerning proper edge colorings of complete graphs.

Mathematics Subject Classification (1991)


Copyright information

© János Bolyai Mathematical Society 1997

Authors and Affiliations

  • Paul Erdős
    • 1
  • András Gyárfás
    • 1
  1. 1.Computer and Automation InstituteHungarian Academy of SciencesBudapestHungary

Personalised recommendations