Skip to main content
Log in

Phosphorylation-dependent neurofilament epitopes are reduced at the node of Ranvier

  • Published:
Journal of Neurocytology

Summary

Neurofilaments in axons are highly phosphorylated at multiple sites on the 200 kDa neurofilament (neurofilament-H) and 160 kDa (neurofilament-M) subunit peptides. We used a panel of monoclonal and polyclonal antibodies against distinct neurofilament epitopes to study the distribution of these epitopes along the axons of large myelinated fibres in rat sciatic nerve using quantitative electron microscopic immunocytochemistry with colloidal gold. Antibodies specific for phosphorylated epitopes on neurofilament-H showed a 60% reduction in density of immunoreactivity at the node of Ranvier, compared to the internodal axon. Antibodies directed against neurofilament-M, which recognized phosphorylated epitopes preferentially, showed a 40% reduction in density of immunoreactivity at the node. Following dephosphorylation of the neurofilaments in tissue sections by alkaline phosphatase treatment, antibodies which recognized dephosphorylated forms of neurofilament-H showed no reduction in density of immunoreactivity at the node. Similarly, an antibody directed against the 70 kDa subunit (neurofilament-L), showed no reduction in density of immunoreactivity at the node.

An antibody against tubulin also showed no decrease in the density of immunoreactivity at the node of Ranvier. Tubulin immunoreactivity was similar in myelinated and unmyelinated fibres. In contrast to phosphorylated neurofilament epitopes, immunoreactivity was much greater in myelinated than unmyelinated fibres.

These results suggest that the degree of phosphorylation of neurofilament-H and neurofilament-M subunits is reduced at the node of Ranvier, in comparison to internodal neurofilaments, and imply that a post-translational modification of neurofilaments must occur along the length of the axon at the node.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennet, G. S. &Dilullo, C. (1985) Slow posttranslational modification of a neurofilament protein.Journal of Cell Biology 100, 1799–1804.

    PubMed  Google Scholar 

  • Berthold, C.-H. (1978) Morphology of normal peripheral axons. InPhysiology and Pathobiology of Axons, (edited byWaxman, S. G.) pp. 3–64. New York: Raven Press.

    Google Scholar 

  • Dosemeci, A., Floyd, C. C. &Pant, H. C. (1990) Characterization of neurofilament associated protein kinase activities from bovine spinal cord.Cell and Molecular Neurobiology 10, 369–82.

    Google Scholar 

  • Friede, R. L. &Samorajski, T. (1970) Axon caliber related to neurofilaments and microtubules in sciatic nerve fibres of rats and mice.Anatomical Record 167, 379–86.

    PubMed  Google Scholar 

  • Gold, B. G., Price, D. L., Griffin, J. W., Rosenfeld, J., Hoffman, P. N., Sternberger, N. H. &Sternberger, L. A. (1988) Neurofilament antigens in acrylamide neuropathy.Journal of Neuropathology and Experimental Neurology 47, 145–57.

    PubMed  Google Scholar 

  • Goldstein, M. E., Sternberger, N. H. &Sternberger, L. A. (1987) Phosphorylation protects neurofilaments against proteolysis.Journal of Neuroimmunology 14, 149–60.

    PubMed  Google Scholar 

  • Gonda, Y., Nishizawa, K., Andos, S., Kitamura, Y., Minoura, Nishi, Y. &Inagaki, M. (1990) Involvement of protein kinase C in the regulation of assembly-disassembly of neurofilaments in vitro.Biochemical and Biophysical Research Communications 167, 1316–25.

    PubMed  Google Scholar 

  • Griffin, J. W. &Watson, D. F. (1988) Axonal transport in neurological disease.Annals of Neurology 23, 3–13.

    PubMed  Google Scholar 

  • Griffin, J. W., Fahenstock, K. E., Price, D. L. &Cork, L. C. (1983) Cytoskeletal disorganization induced by local application of beta, beta′-iminodipropionitrile and 2,5-hexanedione.Annals of Neurology 14, 55–61.

    PubMed  Google Scholar 

  • Hart, C. E., Nuckolls, G. H. &Wood, J. G. (1987) Subcellular compartmentalization of phosphorylated neurofilament polypeptides in neurons.Cell Motility and the Cytoskeleton 7, 393–403.

    PubMed  Google Scholar 

  • Hisanaga, S.-I. &Hirokawa, N. (1989) The effects of dephosphorylation on the structure of the projections of neurofilaments.Journal of Neuroscience 9, 959–66.

    PubMed  Google Scholar 

  • Hisanaga, S.-I. &Hirokawa, N. (1990) Dephosphorylation-induced interactions of neurofilaments with microtubules.Journal of Biological Chemistry 265, 21852–8.

    PubMed  Google Scholar 

  • Hoffman, P. N. &Laser, R. J. (1975) The slow component of axonal transport: identification of major structural polypeptides of the axon and their generality among mammalian neurons.Journal of Cell Biology 66, 351–66.

    PubMed  Google Scholar 

  • Hoffman, P. N., Griffin, J. W. &Price, D. L. (1984) Control of axonal caliber by neurofilament transport.Journal of Cell Biology 9, 705–14.

    Google Scholar 

  • Hoffman, P. N., Thompson, G. W., Griffin, J. W. &Price, D. L. (1985) Changes in neurofilament transport coincide temporally with alterations in the caliber of axons in regenerating motor fibres.Journal of Cell Biology 101, 1332–40.

    PubMed  Google Scholar 

  • Julien, J.-P. &Mushynski, W. E. (1982) Multiple phosphorylation sites in mammalian neurofilament polypeptides.Journal of Biological Chemistry 257, 10467–70.

    PubMed  Google Scholar 

  • Julien, J.-P. I-Mushynski, W. E. (1983) The distribution of phosphorylation sites among identified proteolytic fragments of mammalian neurofilaments.Journal of Biological Chemistry 2558, 4019–25.

    Google Scholar 

  • Julien, J.-P., Smoluk, G. D. &Mushynski, W. E. (1983) Characteristics of the protein kinase activity associated with rat neurofilament preparations.Biochemica et Biophysica Acta 755, 25–31.

    Google Scholar 

  • Karlsson, J.-E., Rosengren, L. E. &Haglin, K. G. (1989) Polyclonal antisera to the individual neurofilament triplet proteins: a characterization using ELIS A and immunoblottingJournal of Neurochemistry 53, 759–65.

    PubMed  Google Scholar 

  • Lee, V. M.-Y., Carden, M. J., Schlaefer, W. W. &Trojanowski, J. Q. (1987) Monoclonal antibodies distinguish several differentially phosphorylated states of the two largest rat neurofilament subunits (NF-H and NF-M) and demonstrate their existence in the normal nervous system of adult rats.Journal of Neuroscience 7, 3474–88.

    PubMed  Google Scholar 

  • Lewis, S. E. &Nixon, R. A. (1988) Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments.Journal of Cell Biology 107, 2689–701.

    PubMed  Google Scholar 

  • Mata, M., Alessi, D. &Fink, D. J. (1990) S100 is preferentially distributed in myelin-forming Schwann cells.Journal of Neurocytology 19, 432–42.

    PubMed  Google Scholar 

  • Minami, Y. &Sakai, H. (1985) Dephosphorylation suppresses the activity of neurofilament to promote tubulin polymerization.FEBS Letters 185, 239–42.

    PubMed  Google Scholar 

  • Mori, H. &Kurokawa, M. (1980) Morphological and biochemical characterization of neurofilaments isolated from the rat peripheral nerve.Biomedical Research 1, 24–31.

    Google Scholar 

  • Nixon, R. A. &Lewis, S. E. (1986) Differential turnover of phosphate groups on neurofilament subunits in mammalian neurons in vivo.Journal of Biological Chemistry 261, 16298–301.

    PubMed  Google Scholar 

  • Nixon, R. A., Lewis, S. E. &Marotta, C. A. (1987) Posttranslational modification of neurofilament proteins by phosphate during axoplasmic transport in retinal ganglion cell neurons.Journal of Neuroscience 7, 1145–58.

    PubMed  Google Scholar 

  • Pant, H. C. (1988) Dephosphorylation of neurofilament proteins enhances their susceptibility to degradation by calpain.Biochemical Journal 256, 665–8.

    PubMed  Google Scholar 

  • Parhad, I. M., Griffin, J. W., Clark, A. W. &Koves, J. F. (1984) Doxorubicin intoxication: neurofilamentous axonal changes with subacute neuronal death.Journal of Neuropathology and Experimental Neurology 43, 188–200.

    PubMed  Google Scholar 

  • Pestronk, A., Watson, D. F. &Yuan, C. M. (1990) Neurofilament phosphorylation in peripheral nerve: changes with axonal length and growth state.Journal of Neurochemistry 54, 977–82.

    PubMed  Google Scholar 

  • Rosenfeld, J., Dorman, M. E., Griffin, J. W., Sternberger, L. A., Sternberger, N. H. &Price, D. L. (1987) Distribution of neurofilament antigens after axonal injury.Journal of Neuropathology and Experimental Neurology 46, 269–82.

    PubMed  Google Scholar 

  • Shaw, G. &Weber, K. (1982) Differential expression of neurofilament triplet proteins in brain development.Nature 298, 277–9.

    PubMed  Google Scholar 

  • Shaw, G., Osborn, M. &Weber, K. (1986) Reactivity of a panel of neurofilament antibodies on phosphorylated and dephosphorylated neurofilaments.European Journal of Cell Biology 42, 1–9.

    PubMed  Google Scholar 

  • Siegel, G. J., Desmond, T. &Ernst, S. A. (1986) Immunoreactivity and ouabain-dependent phosphorylation of (Na++K+)-adenosine triphosphatase catalytic subunit doublets.Journal of Biological Chemistry 261, 13768–76.

    PubMed  Google Scholar 

  • Sihag, R. K. &Nixon, R. A. (1989) In vivo phosphorylation of distinct domains of the 70-kilodalton neurofilament subunit involves different protein kinases.Journal of Biological Chemistry 264, 457–64.

    PubMed  Google Scholar 

  • Sternberger, L. A. &Sternberger, N. H. (1983) Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ.Proceedings of the National Academy of Sciences (USA) 80, 6126–30.

    Google Scholar 

  • Sternberger, L. A., Harwell, L. W. &Sternberger, N. H. (1982) Neurotypy: regional individuality in rat brain detected by immunocytochemistry with monoclonal antibodies.Proceedings of the National Academy of Sciences (USA) 79, 1326–30.

    Google Scholar 

  • Szaro, B. G., Whitnall, M. H. &Gainer, H. (1990) Phosphorylation-dependent epitopes on neurofilament proteins and neurofilament densities differ in axons in the corticospinal and primary sensory dorsal column tracts in the rat spinal cord.Journal of Comparative Neurology 302, 220–35.

    PubMed  Google Scholar 

  • Towbin, H., Staehelin, T. &Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proceedings of the National Academy of Sciences (USA) 76, 4350–4.

    Google Scholar 

  • Watson, D. F. &Griffin, J. W. (1987) Vacor neuropathy: ultrastructural and axonal transport studies.Journal of Neuropathology and Experimental Neurology 46, 96–108.

    PubMed  Google Scholar 

  • Watson, D. F., Griffin, J. W., Fittro, K. P. &Hoffman, P. N. (1989) Phosphorylated-dependent immunoreactivity of neurofilaments increases during axonal maturation and beta, beta-iminodiproprionitrile intoxication.Journal of Neurochemistry 53, 1818–29.

    PubMed  Google Scholar 

  • Wilkerson, L. (1990) SYSTAT: The System for Statistics. Evanston, IL: Systat, Inc.

    Google Scholar 

  • Willard, M. &Simon, C. (1983) Modulation of neurofilament axonal transport during the development of rabbit retinal ganglion cells.Cell 35, 551–9.

    PubMed  Google Scholar 

  • Wong, J., Hutchison, S. B. &Liem, R. K. H. (1984) An isoelectric variant of the 150,000-dalton neurofilament.Journal of Biological Chemistry 259, 10867–74.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mata, M., Kupina, N. & Fink, D.J. Phosphorylation-dependent neurofilament epitopes are reduced at the node of Ranvier. J Neurocytol 21, 199–210 (1992). https://doi.org/10.1007/BF01194978

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01194978

Keywords

Navigation