Skip to main content
Log in

Approximation of a ball by zonotopes using uniform distribution on the sphere

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. Beck, Some upper bounds in the theory of irregularities of distribution. Acta Arith.43, 115–130 (1984).

    Google Scholar 

  2. J.Beck and W. W. L.Chen, Irregularities of Distribution. Cambridge 1987.

  3. U. Betke andP. McMullen, Estimating the sizes of convex bodies from projections. J. London Math. Soc. (2)27, 525–538 (1983).

    Google Scholar 

  4. J. Bourgain andJ. Lindenstrauss, Projection Bodies. In: Geometric Aspects of Functional Analysis. LNM1317, 250–270, Berlin-Heidelberg-New York 1988.

    Google Scholar 

  5. J.Bourgain, J.Lindenstrauss and V.Milman, Approximation of Zonoids by Zonotopes. Preprint.

  6. H. Faure, Discrépance de suites associées à un système de numérotation (en dimension s). Acta Arith.41, 337–351 (1982).

    Google Scholar 

  7. T. Figiel, J. Lindenstrauss andV. D. Milman, The dimension of almost spherical sections of convex bodies. Acta Math.139, 53–94 (1977).

    Google Scholar 

  8. P.Filliman, Extremum problems for zonotopes. To appear.

  9. Y. Gordon, Some inequalities for Gaussian processes and applications. Israel J. Math.50, 265–289 (1985).

    Google Scholar 

  10. H.Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Berlin-Göttingen-Heidelberg 1957.

  11. J. H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multidimensional integrals. Numer. Math.2, 84–90 (1960).

    Google Scholar 

  12. E. Hlawka, Funktionen von beschränkter Variation in der Theorie der Gleichverteilung. Ann. Mat. Pura Appl.5, 325–333 (1961).

    Google Scholar 

  13. E. Hlawka, Gleichverteilung auf Produkten von Sphären. J. Reine Angew. Math.330, 1–43 (1982).

    Google Scholar 

  14. L.Kuipers and H.Niederreiter, Uniform distribution of sequences. New York-London-Sydney 1974.

  15. J.Linhart, An upper bound for the intrinsic volumes of equilateral zonotopes. To appear.

  16. J. Linhart, Extremaleigenschaften der regulären 3-Zonotope. Studia Sci. Math. Hung.21, 181–188 (1986).

    Google Scholar 

  17. J. Linhart andF. Österreicher, Gleichmäßige Verteilung von Punkten in metrischen Räumen, speziell auf der Kugel. Monatsh. Math.89, 111–120 (1980).

    Google Scholar 

  18. H. Martini, Parallelbeleuchtung konvexer Körper mit glatten Rändern. Beitr. Algebra Geom.21, 109–124 (1986).

    Google Scholar 

  19. K. B. Stolarsky, Sums of distances between points on a sphere II. Proc. Amer. Math. Soc.41, 572–582 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linhart, J. Approximation of a ball by zonotopes using uniform distribution on the sphere. Arch. Math 53, 82–86 (1989). https://doi.org/10.1007/BF01194876

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01194876

Keywords

Navigation