Skip to main content
Log in

Hypersensitive reaction ofSolanum dulcamara to the gall miteAceria cladophthirus causes an increased susceptibility toTetranychus urticae

  • Published:
Experimental & Applied Acarology Aims and scope Submit manuscript

Abstract

The hypersensitive reaction induced by the eriophyid miteAceria cladophthirus (Nalepa) on detached leaves ofSolanum dulcamara L. did not protect them against subsequent attacks by the spider miteTetranychus urticae Koch. This reaction stimulated the oviposition ofT. urticae; the increase of fecundity was about 40%. As the survival rate and the life-cycle were not affected, higher populations ofT. urticae developed on leaves previously infested byA. cladophthirus than on healty ones. The hypersensitive reaction caused by members of one family of phytophagous mites induced an increased susceptibility to attacks by mites of an unrelated family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, J.A., 1982. Physiological and biochemical events associated with the expression of resistance to disease. In: R.K.S. Wood (Editor), Active Defense Mechanisms in Plants. Plenum Press, New York, NY, pp. 39–65.

    Google Scholar 

  • Bell, A.A., 1981. Biochemical mechanisms of disease resistance. Ann. Rev. Plant Physiol., 32: 21–81.

    Google Scholar 

  • Bell, E.A., 1987. Secondary compounds and insect herbivores. In: V. Labeyrie, G. Fabres and D. Lachaise (Editors), Insects-Plants. W. Junk, Dordrecht, Netherlands, pp. 19–23.

    Google Scholar 

  • Bronner, R. and Westphal, E., 1987. Quelques aspects de la résistance par hypersensibilité deSolanum dulcamara à l'action cécidogène d'un acarien,Eriophyes cladophthirus Nal. In: Premier Congrès de la Société Française de Phytopathologie, Rennes. Numéro Spécial Sciences Agronomiques, ENSAR, Rennes, pp. 98–99.

    Google Scholar 

  • Bronner, R., Westphal, E. and Dreger, F., 1991. Pathogenesis-related proteins inSolanum dulcamara L. resistant to the gall miteAceria cladophthirus (Nalepa). Physiol. Mol. Plant Pathol., 38: 93–104.

    Google Scholar 

  • Carey, J. and Bradley, J. 1982. Developmental rates, vital schedules, sex ratios, and life tables forTetranychus urticae, T. turkestani andT. pacificus (Acarina: Tetranychidae) on cotton. Acarologia, 23: 334–345.

    Google Scholar 

  • Croft, B.A. and Hoying, S.A., 1977. Competitive displacement ofPanonychus ulmi (Acari: Tetranychidae) byAculus schlechtendali (Acarina: Eriophyidae) in apple orchards. Can. Entomol., 109: 1025–1034.

    Google Scholar 

  • De Ponti, O.M.B., 1977. Resistance inCucumis sativus L. toTetranychus urticae Koch. 2. Designing a reliable laboratory test for resistance based on aspects of the host parasite relationship. Euphytica, 26: 641–654.

    Google Scholar 

  • Deverall, B.J., 1977. Defense mechanisms of plants. In: P.W. Brian and J.W.S. Pringler (Editors), Cambridge Monographs in Experimental Botany, No. 19. Cambridge University Press, Cambridge, 170 pp.

    Google Scholar 

  • English-Loeb, G.M. and Karban, R. 1988. Negative interaction between Willamette mites and pacific mites: possible management strategies for grapes. Entomol. Exp. Appl., 48: 269–274.

    Google Scholar 

  • English-Loeb, G.M. and Karban, R., 1991. Consequences of mite feeding injury to beans on the fecundity and survivorship of the two-spotted spider-mite (Acari: Tetranychidae). Exp. Appl. Acarol., 11: 125–136.

    Google Scholar 

  • Fenny, P.P., 1968. Effect of oak leaf tannins on larval growth of the winter mothOperophtera brumata. J. Insect Physiol., 14: 805–817.

    Google Scholar 

  • Harrison, S. and Karban, R., 1986. Behavioural response of spider mites (Tetranychus urticae) to induced resistance of cotton plants. Ecol. Entomol., 11: 181–188.

    Google Scholar 

  • Hart, S.V., Kogan, M. and Paxton, J.D., 1983. Effect of soybean phytoalexins on the herbivorous insects mexican bean beettle and soybean looper. J. Chem. Ecol., 9: 657–672.

    Google Scholar 

  • Harvell, C.D., 1990. The ecology and evolution of inducible defenses. Q. Rev. Biol., 63: 323–340.

    Google Scholar 

  • Kaplan, D.T. and Keen, N.T., 1980. Mechanisms of plant incompatibility to nematodes. Rev. Nématol., 3: 123–134.

    Google Scholar 

  • Karban, R., 1986. Induced resistance against spider mite in cotton: field verification. Entomol. Exp. Appl., 42: 239–242.

    Google Scholar 

  • Karban, R. and Carey, J., 1984. Induced resistance of cotton seedlings to mites. Science, 225: 53–54.

    Google Scholar 

  • Karban, R. and English-Loeb, G., 1988. Effects of herbivory and plant conditioning on the population dynamics of spider mites. Exp. Appl. Acarol., 4: 225–246.

    Google Scholar 

  • Karban, R. and English-Loeb, G.M., 1990. A “vaccination” of Willamette spider mites (Acari: Tetranychidae) to prevent large populations of pacific spider mites on grapevines. J. Econ. Entomol., 83: 2252–2257.

    Google Scholar 

  • Kaufmann, S., Legrand, M., Geoffroy, P. and Fritig, B., 1987. Biological function of “pathogenesis related” proteins: four PR proteins of tobacco have β-1,3-glucanase activity. EMBO J., 6: 3209–3212.

    Google Scholar 

  • Kiraly, Z., Barna, B. and Ersek, T., 1972. Hypersensitivity, a consequence, not a cause, of plant resistance to infection. Nature, 239: 456–458.

    Google Scholar 

  • Klement, Z. and Goodman, R.N., 1967. The hypersensitive reaction to infection by bacterial plant pathogens. Ann. Rev. Phytopathol., 5: 17–44.

    Google Scholar 

  • Kogan, M. and Paxton, J., 1983. Natural inducers of plant resistance to insects. In: P. Hedin (Editor), Plant Resistance to Insects. American Chemical Society, Washington, DC, pp. 153–171.

    Google Scholar 

  • Kuc, J., 1983. Induced systemic resistance in plants to diseases caused by fungi and bacteria. In: J.A. Bailey and B.J. Deverall (Editors), The Dynamics of Host Defense. Academic Press, New York, NY, pp. 233–270.

    Google Scholar 

  • Kuc, J., 1987. Plant immunization and its applicability for disease control. In: I. Chet (Editor), Innovative Approaches to Plant Disease Control. J. Wiley, New York, NY, pp. 255–274.

    Google Scholar 

  • Larson, K.C. and Berry, R.E., 1984. Influence of peppermint phenolics and monoterpenes on twospotted spider mite (Acari: Tetranychidae). Environ. Entomol., 13: 282–285.

    Google Scholar 

  • Legrand, M., Kaufmann, S., Geoffroy, P. and Fritig, B., 1987. Biological function of pathogenesis related proteins: four tobacco pathogenesis related proteins are chitinases. Proc. Natl. Acad. Sci., USA, 84: 6750–6754.

    Google Scholar 

  • Matta, A., 1980. Defenses triggered by previous invaders. In: J.G. Horsfall and E.B. Cowling (Editors), Plant Diseases, an Advanced Treatise, Vol. 5, Academic Press, New York, NY, pp. 345–361.

    Google Scholar 

  • McIntyre, J.L., Dodds, J.A. and Hare, J.D., 1981. Effects of localized infections ofNicotiana tabaccum by tobacco mosaic virus on systemic resistance against diverse pathogens and insects. Phytopathology, 71: 297–301.

    Google Scholar 

  • Murashige, T. and Skoog, F., 1962. A revised medium for rapid growth and bioassay with tobacco cultures. Physiol. Plant., 15: 473–497.

    Google Scholar 

  • Myers, J.H. and Post, B.J., 1981. Plant nitrogen and fluctuations of insect populations: a test with the cinnabar moth-tansy ragwort system. Oecologica, 48: 151–156.

    Google Scholar 

  • Niblett, C.L., Dickson, E., Fernow, K.H., Horst, R.F. and Zaitlin, M., 1978. Cross protection among four viroids. Virology, 91: 198–203.

    Google Scholar 

  • Novacky, A., Acedo, G. and Goodman, R.N., 1973. Prevention of bacterially induced hypersensitive reaction by living bacteria. Physiol. Plant Pathol., 3: 133–136.

    Google Scholar 

  • Rhoades, D.F., 1985. Offensive-defensive interactions between herbivores and plants: their relevance in herbivore population dynamics and ecological theory. Am. Nat., 125: 205–238.

    Google Scholar 

  • Rodriguez, J.G. and Rodriguez, L.D., 1987. Nutritional ecology of phytophagous mites. In: F. Slansky and J.G. Rodriguez (Editors), Nutritional Ecology of Insects, Mites, Spiders and Related Invertebrates. Wiley, New York, NY, pp. 177–208.

    Google Scholar 

  • Ross, A.F., 1961a. Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology, 14: 340–355.

    Google Scholar 

  • Ross, A.F., 1961b. Systemic acquired resistance induced by localized virus infections in plants. Virology, 14: 329–339.

    Google Scholar 

  • Sequeira, L., 1983. Mechanisms of induced resistance in plants. Annu. Rev. Microbiol., 37: 51–79.

    Google Scholar 

  • Shapiro, A.M. and Devay, J.E., 1987. Hypersensitivity reaction ofBrassica nigra. L. (Cruciferae) kills eggs ofPieris butterflies (Lepidoptera: Pieridae). Oecologia, 71: 631–632.

    Google Scholar 

  • Sutherland, O.R.W., Russell, G.B., Biggs, D.R. and Lane, G.A., 1980. Insect feeding deterrant activity of phytoalexin isoflavonoids. Biochem. Syst. Ecol., 8: 73–75.

    Google Scholar 

  • van Loon, L.C., 1977. Production by 2-chloroethylphosphonic acid of viral-like lesions, associated proteins and systemic resistance in tobacco. Virology, 80: 417–420.

    Google Scholar 

  • van Loon, L.C., 1983. The induction of pathogenesis-related proteins by pathogens and specific chemicals. Neth. J. Plant Pathol., 89: 265–273.

    Google Scholar 

  • Westphal, E., Bronner, R. and Le Ret, M., 1981. Changes in leaves of susceptible and resistantSolanum dulcamara infested by the gall miteEriophyes cladophthirus (Acarina, Eriophyoidea). Can. J. Bot., 59: 875–882.

    Google Scholar 

  • Westphal, E., Bronner, R. and Dreger, F., 1989. Résistance par hypersensibilité deS. dulcamara L. à l'attaque d'un ériophyideAceria cladophthirus (Nalepa). Colloque sur les acariens des cultures. Montpellier, Annales ANPP, No. 2, Vol. 1/1, pp. 219–226.

    Google Scholar 

  • Westphal, E., Dreger, F. and Bronner, R., 1990. The gall miteAceria cladophthirus. I. Life-cycle, survival outside the gall and symptoms' expression on susceptible or resistantSolanum dulcamara plants. Exp. Appl. Acarol., 9: 183–200.

    Google Scholar 

  • Westphal, E., Dreger, F. and Bronner, R. (1991. Induced resistance inSolanum dulcamara triggered by the gall miteAceria cladophthirus (Acari: Eriophyoidea). Exp. Appl. Acarol., 12: 111–118.

    Google Scholar 

  • Wood, R.K.S., 1982. Active Defense Mechanisms in Plant. Plenum Press, New York, NY, 381 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westphal, E., Perrot-Minnot, M.J., Kreiter, S. et al. Hypersensitive reaction ofSolanum dulcamara to the gall miteAceria cladophthirus causes an increased susceptibility toTetranychus urticae . Exp Appl Acarol 15, 15–26 (1992). https://doi.org/10.1007/BF01193964

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01193964

Keywords

Navigation