Skip to main content
Log in

Perturbation vectors

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliography

  1. Achiezer, N.I.,The continuous analogues of some theorems on Toeplitz matrices, Ukrainian Math. J16 (1964), 445–462.

    Google Scholar 

  2. Baxter, G.,A convergence equivalence related to polynomials on the unit circle, Trans. Amer. Math. Soc.99 (1961), 471–487.

    Google Scholar 

  3. Baxter, G.,A norm inequality for a finite ‘section’ Wiener-Hopf equation, Illinois Jour. Math.7 (1963), 97–103.

    Google Scholar 

  4. Böttcher, A and Silbermann, B,The asymptotic behaviour of Toeplitz determinants for generating functions with zeros of integral orders, Math. Nachr.102 (1981), 79–105.

    Google Scholar 

  5. Böttcher, A and Silbermann, B, “Invertibility and asymptotics of Toeplitz matrices. Math. Forschung 17,” Akademie-Verlag, 1983.

  6. Carey, R.W. and Pincus, J.D.,Joint Torsion, Preprint (1995–1996), 1–174.

  7. Carey, R.W. and Pincus, J.D.,Joint Torsion of Toeplitz operators with H symbols, Integral Equations and Operator Theory (1998), 1–32 to appear.

  8. Carey, R. and Pincus, J,Mosaics, Principal functions and mean motion in von Neumann algebras, Acta Mathematica138 (1977), 153–218.

    Google Scholar 

  9. Deutsch, F.,The alternating method of von Neumann, Internat. Ser. Numer. Math., Multivariate approximation theory, Proc. conf. Math. Res. Institute. Oberwolfach51, 83–96 (1977), Birkhauser Verlag, Basel-Boston.

    Google Scholar 

  10. Gohberg, I.C. and Fel'dman, I.A., “Convolution equations and projection methods for their solution,” American Mathematical Society; Trans. of Math. Monographs Volume 41, 1974 from the Russian 1971.

  11. Gohberg, I. and Levcenko, V.I., Math. Issled6:4 (1971) 20–36.

    Google Scholar 

  12. Gohberg, I. and Prössdorf S.,Ein Projektionsverfarhen zur Lösung entarteter Systeme von diskreten Wiener-Hopf-Gleichungen, Math. Nachr.65 (1975), 19–45.

    Google Scholar 

  13. Grenander, U. and Szegö, F, “Toeplitz forms and their applications,” Univ. of California Press, 1957.

  14. Kac, M.,Toeplitz matrices, translation kernels and a related problem in probability, Duke Math. J.21 (1954), 501–509.

    Google Scholar 

  15. Kac, M., Murock, W. and Szegö, G.,On the eigenvalues of certain hermitian forms, J. Rational Mechanics and Analysis2 (1953), 767–800.

    Google Scholar 

  16. Knudsen, F.F. and Mumford, D.,The projectivity of the moduli space of stable curves. I; preliminaries on “Det” and “Div”, Math. Scand.39 (1976), 19–55.

    Google Scholar 

  17. Krein, M.G.,On some investigations in the perturbation theory of self-adjoint operators (Russian), First Summer School, Kiev (1964), 103–187.

    Google Scholar 

  18. Linnik, I. Ju,A multidimensional analogue of the a limit theorem of G. Szegö, Math USSR-Izvestia9 (1975), 1323–1332.

    Google Scholar 

  19. Nikol'skii, N.K., “Treatise on the shift operator,” Springer-Verlag, Grundlehren 273, Berlin, 1986.

    Google Scholar 

  20. Peller, V.,Functional calculus for a pair of commuting self-adjoint operators, J. Funct. Anal.112 (1993), 325–342.

    Google Scholar 

  21. Pietsch, A., “Eigenvalues and s-numbers,” Cambridge University Press- Studies in Advanced Mathematics #13, 1987.

  22. Pincus, J.D. Editor, Summer Institute on Spectral Theory and Statistical Mechanics (1965), Brookhaven National Laboratory, Upton N.Y.

    Google Scholar 

  23. Quillen, D.G.,Det of Cauchy Riemann Operators on Riemann Surfaces, Functional Analysis Appl (1985), 31–34.

  24. Ramakrishnan, D.,Regulators, Algebraic cycles, Values of L-functions, Contemporary Math. “Algebraic K-Theory and Algebraic Number Theory”83 (1989).

  25. Riesz, F. and Sz.-Nagy, B., “Lecons D'analyse Fonctionnelle, 2'nd ed.,” Akademie Kiado, Budapest, 1953.

    Google Scholar 

  26. Szegö, G,Ein Grenzwertsatz über die Toeplitzschen Determinanten einer reelen positiven function, Math. Ann,76 (1915), 490–503.

    Google Scholar 

  27. Szegö, G,on certain Hermitian forms associated with the fourier series of a positive function, Festskrift Marcel Riesz (Lund 1952), 228–238.

  28. Sz-Nagy and C. Foias, “Analyse Harmonique Des Operateurs de L'espace de Hilbert,” Masson et Cie, 1967.

  29. Vasyunin, V.I.,Unconditionally convergent spectral expansions and interpolation problems, Trudy. Mat. Inst. Steklov, [Russian]130 (1977), 5–49.

    Google Scholar 

  30. Widom, H.,Szegö's limit theorem: The higher dimensional matrix case, Jour. Funct. Analysis39 (1980), 182–198.

    Google Scholar 

  31. Widom, H., “Asymptotic Expansions for Pseudodifferential Operators on Bounded Domains,” Springer-Verlag, Lecture Notes in Mathematics 1152.

  32. Kolmogorov, A.N. and Rozanov, Yu.A., On conditions for strong mixing of a stationary Gaussian process, Teor. Verojatnost. i. Primen5 (1960), 221–227.

    Google Scholar 

  33. Helson, H. and Szegö, G.,A problem of prediction theory, Ann. Mat. Pura Appl.51 (1960), 107–138.

    Google Scholar 

  34. Helson, H. and Sarason, D.,Past and Future, Math. Scand.21 (1967), 5–16.

    Google Scholar 

  35. J. Anderson and L.N. Vaserstein,Commutators in ideals of trace class operators, Indiana Univ. Math. Jour.35 (1986), 345–372.

    Google Scholar 

  36. D. Quillen, “Actes Congress Intern. Math.-Cohomology of Groups”, 1970.

  37. Orth., D.,The discrete Wiener-Hopf equation, Math. Ann.182 (1969), 104–120.

    Google Scholar 

  38. I.A. Volodin,Algebraic K-theory as an extraordinary homology theory on the category of associative rings with 1, Isz. AN. USSR, Ser mat35 (1971), 844–873.

    Google Scholar 

  39. Devinatz, A.,The strong Szegö limit theorem, Illinois. J. Math11 (1967), 160–175.

    Google Scholar 

  40. Widom, H,Asymptotic behavior of block Toeplitz matrices and determinants, II, Adv. in Math.21 (1976), 1–29.

    Google Scholar 

  41. Fisher, M.E. and Hartwig R.E.,Toeplitz determinants, some applications, theorems and conjectures, Adv. Chem. Phys.15 (1968), 333–353.

    Google Scholar 

  42. Fisher, M.E. and Hartwig R.E.,Asymptotic behavior of Toeplitz matrices and determinants, Arch. Rat. Mech. Anal.32 (1969), 190–255.

    Google Scholar 

  43. J. Silvester, “Introduction to Algebraic K-Theory”, Chapman and Hall, New York, 1981.

    Google Scholar 

  44. Berrick, A.J., “An approach to algebraic K-theory”, Pitman Notes in Math. London, 1982.

  45. T.T. Wu,Theory of Toeplitz determinants and spin correlations of the two dimensional Ising model, Physical Review149 (1996), 380.

    Google Scholar 

  46. Fisher, M.E. and Stephenson, J.,Statistical mechanics of dimers on a plane lattice, II, Dimer correlations and monomers, Physical Review132 (1963), 1411–14341.

    Google Scholar 

  47. Lenard, A.,Momentum distribution in the ground state of the one dimensional system of impenetrable bosons, J. Math, Phys.5 (1964), 930–943.

    Google Scholar 

  48. Lenard, A.,Some remarks on large Toeplitz determinants, Pacific Jour. Math.42 (1972), 137–145.

    Google Scholar 

  49. Dyson, F.,Statistical theory of the energy levels of complex systems, I, J. Math., Phys.3 (1962), 140.

    Google Scholar 

  50. Dyson, F.,A Brownian motion model for the eigenvalues of a random matrix, III, J. Math,. Phys.3 (1962), 1191.

    Google Scholar 

  51. Wilson, K.,Proof of a conjecture of Dyson, J. Math, Phys.3, 1040.

  52. Hayashi, E.,The kernel of a Toeplitz operator, Integral Equations and Operator Theory9 (1986), 588–591.

    Google Scholar 

  53. Malmquist, F.,Sur la détermination d'une class de fonctions analytiques par leurs valeurs dans un ensemble donné de points, Comptes Rendues du Sixième Congrès (1925) des mathématiciens scandinaves (Koppenhagen, 1926), 253–259.

  54. Walsh, J.L., “Interpolation and approximation by rational functions in the complex domain”, Amer. Math. Soc Colloquium Publications. vol 20, 1935.

  55. Bass, H., “Algebraic K-Theory” W.A. Benjamin, N.Y., 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work has been supported by National Science Foundation grants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carey, R., Pincus, J. Perturbation vectors. Integr equ oper theory 35, 271–365 (1999). https://doi.org/10.1007/BF01193903

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01193903

AMS subjects (1991)

Navigation