Utilization of electron acceptors by lactobacilli isolated from sourdough

II. Lactobacillus pontis, L. reuteri, L. amylovorus, andL. fermentum
  • Peter Stolz
  • Rudi F. Vogel
  • Walter P. Hammes
Original Paper


The metabolism of maltose and the use of electron acceptors has been investigated in strains of lactobacilli which are known to be stable elements in sourdoughs, which, traditionally, have been used for a long time. The metabolic features ofLactobacillus sanfrancisco have been described by us in a previous communication. Similar principles have been detected for the competitiveness ofL. pontis, L. reuteri, L. fermentum andL. amylovorus, as well as species-specific characteristics. Based on these findings the metabolic key reactions have been identified and the use of electron acceptors present in sourdough are presented in a schematic overview. In contrast toL. sanfrancisco, these species can not use oxygen as an electron acceptor, and the length of their lag phase was not affected by agitation. Malate and fumarate were reduced to succinate, and fructose was used, depending on the species, as an electron acceptor, carbon source or both. All heterofermentative sourdough lactobacilli efficiently split maltose using maltose phosphorylase. Glucose was excreted, which induced glucose repression in competing indigenous micro-organisms, without affecting the maltose metabolism of sourdough lactobacilli. Lactobacilli generate additional adenosine 5′-triphosphate (ATP) from acetyl phosphate in the presence of electron acceptors. These special features are suggested to represent a general principle which accounts for the prevalence of specific heterofermentative lactobacilli which are propagated over long periods present in sourdough fermentations.


Fermentation Fructose Lactobacillus Maltose Electron Acceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Spicher G, Schroder R (1978) Z Lebensm Unters Forsch 167: 342–354PubMedGoogle Scholar
  2. 2.
    Kline L, Sugihara TF (1971) Appl Microbiol 21: 459–465PubMedGoogle Scholar
  3. 3.
    Nout MJR, Creemers-Molenar T (1987) Chem Mikrobiol Technol Lebensm 10: 162–167Google Scholar
  4. 4.
    Böcker G, Vogel RF, Hammes WP (1990) Getreide Mehl Brot 44: 269–274Google Scholar
  5. 5.
    Vogel RF, Böcker G, Stolz P, Ehrmann M, Fanta D, Ludwig W, Pot B, Kersters K, Schleifer KH, Hammes WP (1994) Int J Syst Bacteriol 44: 223–229PubMedGoogle Scholar
  6. 6.
    Hamad S, Böcker G, Vogel RF, Hammes WP (1992) Appl Microbiol Biotechnol 37: 728–731Google Scholar
  7. 7.
    Spicher G, Stephan H (1966) Zentralbl Bakteriol Parasitenk Infektionskr Hyg Abt II 120: 699–701Google Scholar
  8. 8.
    Lönner C, Welander T, Molin N, Dostalek M, Blickstad E (1986) Food Microbiol 3: 3–12Google Scholar
  9. 9.
    Spicher G (1987) Z Lebensm Unters Forsch 184: 300–303Google Scholar
  10. 10.
    Strohmar W, Diekmann H (1992) Z Lebensm Unters Forsch 194: 536–546Google Scholar
  11. 11.
    Sugihara TF, Kline L, Miller MW (1971) Appl Microbiol 21: 456–458PubMedGoogle Scholar
  12. 12.
    Medcalf DG, Cheung PW (1971) Cereal Chem 48: 1–8Google Scholar
  13. 13.
    Saunders RM, Ng H, Kline L (1972) Cereal Chem 49: 86–91Google Scholar
  14. 14.
    Spicher G, Schröder R, Schöllhammer K (1979) Z Lebensm Unters Forsch 167: 77–81Google Scholar
  15. 15.
    Galli A, Franzetti L, Fortina MG (1987) Microbiol Aliments Nutr 5: 3–9Google Scholar
  16. 16.
    Barber S, Baguena R, Benedito de Barber C, Martinez-Anaya MA (1991) Z Lebensm Unters Forsch 192: 46–52Google Scholar
  17. 17.
    Martinez-Anaya MA, Pitarch B, Bayarri P, Benedito de Barber C (1990) Cereal Chem 67: 85–91Google Scholar
  18. 18.
    Stolz P, Böcker G, Vogel RF, Hammes WP (1993) FEMS Microbiol Lett 109: 237–242Google Scholar
  19. 19.
    Wood BJB, Rainbow C (1961) Biochem J 78: 204PubMedGoogle Scholar
  20. 20.
    Stolz P, Böcker G, Hammes WP, Vogel RF (1995) Z Lebensm Unters Forsch 201: 91–96Google Scholar
  21. 21.
    Spicher G, Rabe E (1983) Z Lebensm Unters Forsch 176: 190–195Google Scholar
  22. 22.
    Röcken W, Rick M, Reinkemeier M (1992) Z Lebensm Unters Forsch 195: 259–263Google Scholar
  23. 23.
    Martinez-Anaya M, Llijn ML, Macias MP, Collar C (1994) Z Lebensm Unters Forsch 199: 186–190PubMedGoogle Scholar
  24. 24.
    Condon S (1983) Ir J Food Sci Technol 7: 15–29Google Scholar
  25. 25.
    Klempp J, Regula E, Wassermann L (1982) Z Lebensm Unters Forsch 175: 403–405Google Scholar
  26. 26.
    Kandler O (1983) J Antonie van Leeuwenhoek 49: 209–224Google Scholar
  27. 27.
    Condon S (1987) FEMS Microbiol Rev 46: 269–280Google Scholar
  28. 28.
    Starrier JR, Stoyla BO (1967) Appl Microbiol 15: 1025–1030Google Scholar
  29. 29.
    Peinado JM, Barbero A, van Uden N (1987) Appl Microbiol Biotechnol 26: 154–157Google Scholar
  30. 30.
    Mohammed SI, Steenson LR, Kirleis AW (1991) Appl Environ Microbiol 57: 2529–2533Google Scholar
  31. 31.
    Spicher G, Schröder R, Stephan H (1980) Z Lebensm Unters Forsch 171: 119–124Google Scholar
  32. 32.
    Veiga-Da-Cunha M, Firme P, San Romáo MV, Santos H (1992) Appl Environ Microbiol 58: 2271–2279Google Scholar
  33. 33.
    Neubauer H, Glaasker E, Hammes WP, Poolman B, Konings WN (1994) Bacteriol 176: 3007–3012PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Peter Stolz
    • 1
  • Rudi F. Vogel
    • 2
  • Walter P. Hammes
    • 1
  1. 1.Institut für LebensmitteltechnologieStuttgartGermany
  2. 2.Lehrstuhl für Technische Mikrobiologie, TechnischeUniversität MünchenFreising-WeihenstephanGermany

Personalised recommendations