Uniqueness and minimality of large face-width embeddings of graphs


LetG be a graph embedded in a surface of genusg. It is shown that if the face-width of the embedding is at leastclog(g)/loglog(g), then such an embedding is unique up to Whitney equivalence. If the face-width is at leastclog(g), then every embedding ofG which is not Whitney equivalent to our embedding has strictly smaller Euler characteristic.

This is a preview of subscription content, access via your institution.


  1. [1]

    D. Archdeacon: Densely embedded graphs,J. Combin. Theory. Ser. B.54 (1992), 13–36.

    Google Scholar 

  2. [2]

    J. A. Bondy, andU. S. R. Murty:Graph Theory with Applications, North-Holland, New York, 1981.

    Google Scholar 

  3. [3]

    J. L. Gross, andT. W. Tucker:Topological Graph Theory, Wiley-Interscience, New York, 1987.

    Google Scholar 

  4. [4]

    B. Mohar: Combinatorial local planarity and the width of graph embeddings,Canad. J. Math.,44 (1992), 1272–1288.

    Google Scholar 

  5. [5]

    N. Robertson, andR. P. Vitray: Representativity of surface embeddings, in:Paths, Flows, and VLSI-Layout, (B. Korte, L. Lovász, H. J. Prömel, and A. Schrijver Eds.), Springer-Verlag, Berlin, 1990, 293–328.

    Google Scholar 

  6. [6]

    P. D. Seymour, andR. Thomas: Uniqueness of highly representative surface embeddings, preprint, 1993/94.

  7. [7]

    C. Thomassen: Embeddings of graphs with no short noncontractible cycles,J. Combin. Theory, Ser. B,48 (1990), 155–177.

    Google Scholar 

  8. [8]

    W. T. Tutte: How to draw a graph,Proc. London Math. Soc.,13 (1963), 743–768.

    Google Scholar 

  9. [9]

    H. Whitney: 2-isomorphic graphs,Amer. Math. J.,55 (1933), 245–254.

    Google Scholar 

Download references

Author information



Additional information

Supported in part by the Ministry of Science and Technology of Slovenia, Research Project P1-0210-101-94.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mohar, B. Uniqueness and minimality of large face-width embeddings of graphs. Combinatorica 15, 541–556 (1995). https://doi.org/10.1007/BF01192526

Download citation

Mathematical Subject Classification (1991)

  • 05 C 10