Abstract
For every positive integerk, there is a positive integerf(k) such that every finite digraph of minimum outdegreef(k) contains verticesx, y joined byk openly disjoint paths.
This is a preview of subscription content, access via your institution.
References
- [1]
A. Frank, T. Ibaraki, andH. Nagamochi: On sparse subgraphs preserving connectivity properties,J. Graph Theory,17 (1993), 275–281.
- [2]
Y. O. Hamidoune: Sur les atomes d'un graphe orienté,C. R. Acad. Sci. Paris Sér. A,284 (1977), 1253–1256.
- [3]
Y. O. Hamidoune: Quelques problèmes de connexité dans les graphes orientés,J. Combin. Theory B,30 (1981), 1–10.
- [4]
W. Mader: Homomorphieeigenschaften und mittlere Kantendichte von Graphen,Math. Ann.,174 (1967), 265–268.
- [5]
W. Mader: Existenz gewisser Konfigurationen inn-gesättigten Graphen und in Graphen genügend großer Kantendichte,Math. Ann.,194 (1971), 295–312.
- [6]
W. Mader: Grad und lokaler Zusammenhang in endlichen Graphen,Math. Ann.,205 (1973), 9–11.
- [7]
W. Mader: Ecken mit starken Zusammenhangseigenschaften in endlichen Graphen,Math. Ann.,216 (1975), 123–126.
- [8]
W. Mader: Degree and local connectivity in digraphs,Combinatorica,5 (1985), 161–165.
- [9]
W. Mader: Ecken von kleinem Grad in kritischn-fach zusammenhängenden Digraphen.J. Combin. Theory B,53 (1991), 260–272.
- [10]
H. Sachs: Einführung in die Theorie der endlichen Graphen,Carl Hanser Verlag, München 1971.
- [11]
C. Thomassen: Even cycles in directed graphs,European J. of Combinatorics,6 (1985), 85–89.
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Mader, W. Exixtence of vertices of local connectivityk in digraphs of large outdegree. Combinatorica 15, 533–539 (1995). https://doi.org/10.1007/BF01192525
Received:
Revised:
Issue Date:
Mathematics Subject Classification (1991)
- 05 C 20
- 05 C 40