Some remarks on (k−1)-critical subgraphs ofk-critical graphs

Abstract

A graphG is said to bek-critical if it has chromatic numberk, but every proper subgraph ofG has a (k−1)-coloring. Gallai asked whether every largek-critical graph contains many (k−1)-critical subgraphs. We provide some information concerning this question and some related questions.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Noga, Alon: The maximum number of Hamiltonian paths in tournaments,Combinatorica,10 (1990), 319–324.

    Google Scholar 

  2. [2]

    Noga Alon, J. Spencer andP. Erdős, The probabilistic method,Wiley Interscience Series in Discrete Mathematics and Optimization, 1992, 23–25.

  3. [3]

    Béla Bollobás: Extremal Graph Theory,Academic Press, 1978.

  4. [4]

    L. M. Brégman: Some properties of nonnegative matrices and their permanents.Soviet Math. Dokl. 14 (1973), 945–949; [Dokl. Akad. Nauk SSSR,211, (1973), 27–30].

    Google Scholar 

  5. [5]

    G. A. Dirac: Some theorems on abstract graphs,Proc. Lond. Math. Soc. Series 3,2 (1952), 69–81.

    Google Scholar 

  6. [6]

    G. Hajós: Über eine Konstruktion nichtn-Färbbarer Graphen,Wiss. Zeit. Martin-Luther Univ. Halle-Wittenberg, Math-Natur.,10, (1961), 116–117.

    Google Scholar 

  7. [7]

    J. B. Kelly andL. M. Kelly: Paths and circuits in critical graphs,Amer. Jour. Math.,76, (1954), 786–792.

    Google Scholar 

  8. [8]

    H. Sachs andM. Stiebitz: On constructive methods in the theory of colour-critical graphs,Discrete Mathematics,74, (1989), 201–226.

    Google Scholar 

  9. [9]

    A. Schrijver: A short proof of Minc's conjecture,J. Combinatiorial Theory, Series A,25, (1978), 80–83.

    Google Scholar 

  10. [10]

    M. Stiebitz: Subgraphs of colour-critical graphs,Combinatorica,7, (1987), 303–312.

    Google Scholar 

  11. [11]

    B. Toft: Graph Colouring Theory,Odense Universitet, (1987).

  12. [12]

    B. Toft: On critical subgraphs of colour-critical graphs,Discrete Mathematics,7, (1974), 377–392.

    Google Scholar 

  13. [13]

    B. Toft: On the maximal number of edges in criticalk-chromatic graphs,Studia Sci. Math. Hung.,5, (1970) 461–470.

    Google Scholar 

  14. [14]

    B. Toft: 75 graph-coloring problems,“Graph Colouring,” Pitman Research Notes in Mathematics Series (R. Nelson and R. J. Wilson, eds.) vol.218, Longman, (1990), 9–35.

  15. [15]

    P. Turán: On an extremal problem in graph theory, (in Hungarian),Mat. Fiz. Lapok,48, (1941) 436–452; (English translation in: P. Erdős (editor), Collected Papers of Paul Turán, Volume 1, Akadémia Kiadó, Budapest, (1990), 231–240.

    Google Scholar 

  16. [16]

    H. J. Voss: Graphs with prescribed maximal subgraphs and critical chromatic graphs,Comment Math. Univ. Carolinae,18, (1977), 129–142.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abbott, H.L., Zhou, B. Some remarks on (k−1)-critical subgraphs ofk-critical graphs. Combinatorica 15, 469–474 (1995). https://doi.org/10.1007/BF01192519

Download citation

Mathematics Subject Classification (1991)

  • 05 C 15
  • 05 C 35