Skip to main content
Log in

Application of the many-body perturbation theory to normal saturated hydrocarbons in the localized representation

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

The second-order energy corrections are calculated for some normal saturated hydrocarbons by using the many body-perturbation theory (MBPT) based on localized orbitals. The correlation energies are expressed as the sum of contributions from virtual orbital pairs. We have found that these contributions are transferable and have interesting structural features: the trans-coplanar effects are relatively large. Partitioning the correlation energies according to the “order of neighbourhood” we have found that the zero order effects are the largest but the first and second neighbour contributions are also important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Goldstone J (1957) Proc Roy Soc London A239:267

    Google Scholar 

  2. Brandow BH (1967) Rev Mod Phys 39:771

    Google Scholar 

  3. Paldus J, Cizek J (1975) Adv Quantum Chem 9:105

    Google Scholar 

  4. Bartlett RJ (1981) Ann Rev Phys Chem 32:359

    Google Scholar 

  5. Pople JA, Binkley JS, Seeger R (1976) Int J Quantum Chem S 10:1

    Google Scholar 

  6. Wilson S (1984) Electron correlation in molecules. Clarendon, Oxford

    Google Scholar 

  7. Bartlett RJ, Purvis G (1978) Int J Quantum Chem 14:561

    Google Scholar 

  8. Krishnan R, Pople JA (1978) Int J Quantum Chem 14:91

    Google Scholar 

  9. Wilson S, Silver DM (1979) Int J Quantum Chem 15:683

    Google Scholar 

  10. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Google Scholar 

  11. Krishnan R, Frisch MJ, Pople JA (1980) J Chem Phys 72:4244

    Google Scholar 

  12. Urban M, Noga J, Kellő V (1983) Theor Chim Acta 66:549

    Google Scholar 

  13. Kellő V, Urban M, Noga J, Diercksen GHF (1984) J Am Chem Soc 106:5864

    Google Scholar 

  14. Knowles PJ, Somasundram K, Handy NC, Hirao K (1985) Chem Phys Lett 113:8

    Google Scholar 

  15. Nesbet RK (1960) Rev Mod Phys 33:28

    Google Scholar 

  16. Kapuy E (1966) Theor Chim Acta 6:281; (1968) 12:397

    Google Scholar 

  17. Diner S, Malrieu JP, Claverie P (1969) Theor Chim Acta 13:1, 18

    Google Scholar 

  18. Amos AT, Musher JI (1971) J Chem Phys 54:2380

    Google Scholar 

  19. Davidson ER, Bender CF (1972) J Chem Phys 56:4334; Davidson ER (1972) J Chem Phys 57:1999

    Google Scholar 

  20. Cizek J (1966) J Chem Phys 45:4256; (1969 Adv Chem Phys 14:36

    Google Scholar 

  21. Kvasnicka V, Laurinc V, Biskupic S, Haring M (1983) Adv Chem Phys 52:181

    Google Scholar 

  22. Meyer W (1973) J Chem Phys 58:1017

    Google Scholar 

  23. Ahlrichs R, Lischka H, Staemmler V, Kutzelnigg W (1975) J Chem Phys 62:1225

    Google Scholar 

  24. Robb MA (1975) In: Diercksen GHF, Sutclifle BT, Veillard A (eds) Computational techniques in quantum chemistry and molecular physics. Reidel, Dordrecht, pp 435–503

    Google Scholar 

  25. Prime S, Robb MA (1976) Theor Chim Acta 42:181

    Google Scholar 

  26. Kapuy E (1981) In: International Union of Pure and Applied Chemistry, 28th Congress, Vancouver, Canada, Abstracts, pp cc013

  27. Kapuy E, Csépes Z, Kozmutza C (1983) Int J Quantum Chem 23:981

    Google Scholar 

  28. Kapuy E, Csépes Z, Kozmutza C (1984) Croat Chem Acta 57:885

    Google Scholar 

  29. Kapuy E, Csépes Z, Pipek J (1984) Acta Phys Hung 55:365

    Google Scholar 

  30. Cullen JM, Lipscomb WN, Zerner MC (1985) J Chem Phys 83:5182

    Google Scholar 

  31. Pipek J, Ladik J (1986) Chem Phys 102:445

    Google Scholar 

  32. Hubac I, Carsky P (1978) Top Curr Chem 75:99

    Google Scholar 

  33. Kapuy E (1981) Acta Phys Hung 51:21

    Google Scholar 

  34. Kozmutza C (1981) Theor Chim Acta 60:53

    Google Scholar 

  35. Bartha F, Kapuy E, Kozmutza C (1985) J Mol Str (Theochem) 122:205

    Google Scholar 

  36. Kozmutza C (1985) J Mol Str (Theochem) 123:391; Kozmutza C, Ozoróczy Zs (1986) J Comput Chem 7:494

    Google Scholar 

  37. Boys SF (1966) In: Löwdin PO (ed) Quantum theory of atoms, molecules and solid state. Academic Press, New York, pp 253–262

    Google Scholar 

  38. Kapuy E, Kozmutza C, Daudel R: to be published

  39. England W, Gordon MS, Ruedenberg K (1975) Theor Chim Acta 37:177

    Google Scholar 

  40. Kapuy E, Kozmutza C, Daudel R (1980) Theor Chim Acta 56:259

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor J. Koutecký on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapuy, E., Bartha, F., Bogár, F. et al. Application of the many-body perturbation theory to normal saturated hydrocarbons in the localized representation. Theoret. Chim. Acta 72, 337–345 (1987). https://doi.org/10.1007/BF01192226

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01192226

Key words

Navigation