Summary
We give a program for solving stochastic boundary value problems involving functionals of (multiparameter) white noise. As an example we solve the stochastic Schrödinger equation {ie391-1} whereV is a positive, noisy potential. We represent the potentialV by a white noise functional and interpret the product of the two distribution valued processesV andu as a Wick productV ◊u. Such an interpretation is in accordance with the usual interpretation of a white noise product in ordinary stochastic differential equations. The solutionu will not be a generalized white noise functional but can be represented as anL 1 functional process.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
[C] Colombeau, J.F.: Generalized functions. Bull. Am. Math. Soc.23, 251–268 (1990)
[D] Durrett, R.: Brownian motion and martingales in analysis. Belmont, C4: Wadsworth 1984
[GHLØUZ] Gjessing, H., Holden, H., Lindstrøm, T., Øksendal, B., Ubøe, J., Zhang, T.-S.: The Wick product. In: Melnikov, A. (ed.) New trends in probability and statistics, vol. IV. Moscow: TVP Publishers (to appear)
[HKPS] Hida, T., Kuo, H.-H., Potthoff, J., Streit, L.: White noise analysis (Forth-coming book)
[HLØUZ] Holden, H., Lindstrøm T., Øksendal, B., Ubøe, J., Zhang, T.-S.: The Burgers equation with a noisy force. Manuscript, 1992 (to appear)
[I] Ito, K.: Multiple Wiener integral. J. Math. Soc. Japan3 157–169, (1951)
[KP] Kuo, H.-H., Potthoff, J.: Anticipating stochastic integrals and stochastic differential equations. In: Hida, T., Kuo, H.-H., Potthoff, J., Streit, L. (eds.) White noise analysis, pp. 256–273. Singapore: World Scientific 1990.
[LØU1] Lindstrøm, T., Øksendal, B., Ubøe, J.: Stochastic differential equations involving positive noise. In: Barlow, M., Bingham, N. (eds.) Stochastic analysis, pp. 261–303. Cambridge: Cambridge University Press 1991.
[LØU2] Lindstrøm, T., Øksendal, B., Ubøe, J.: Wick multiplication and Ito-Skorohod stochastic differential equations. In: Albeverio, S., Fenstand, J.E., Holden, H., Lindstrøm T., (eds.) Ideas and methods in mathematical analysis, stochastics and applications, pp. 183–206. Cambridge: Cambridge University Press 1992
[LØU3] Lindstrøm, T., Øksendal, B., Ubøe, J.: Stochastic modelling of fluid flow in porous media. In: Chen, S., Yong, J. (eds.). Control theory, stochastic analysis and applications, pp. 156–172. Singapore: World Scientific 1991
[GV] Gelfand, I.M., Vilenkin, N. Ya.: Generalized functions, vol. 4: Applications of harmonic analysis, (english translation). New York: Academic Press 1964
[M] Miranda, C.: Partial differential equations of elliptic type, 2nd edn. Berlin Heidelberg New York: Springer 1970
[NZ] Nualart, D., Zakai, M.: Generalized Brownian functionals and the solution to a stochastic partial differential equation. J. Funct. Anal.84, 279–296 (1989)
[Ø] Øksendal, B.: Stochastic differential equations, third edn. Berlin Heidelberg New York: Springer 1992
[W] Walsh, J. B.: An introduction to stochastic partial differential equations. In: Carmona, R., Kesten, H., Walsh, J. B., (eds.) École d'été de probabilités de Saint-Flour XIV-1984. (Lect. Notes Math., vol. 1180, pp. 265–437) Berlin Heidelberg New York: Springer 1986
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Holden, H., Lindstrøm, T., Øksendal, B. et al. Stochastic boundary value problems: a white noise functional approach. Probab. Th. Rel. Fields 95, 391–419 (1993). https://doi.org/10.1007/BF01192171
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01192171