Advertisement

Mathematical systems theory

, Volume 27, Issue 4, pp 365–376 | Cite as

Statistical properties of finite sequences with high Kolmogorov complexity

  • Ming Li
  • Paul M. B. Vitányi
Article

Abstract

We investigate to what extent finite binary sequences with high Kolmogorov complexity are normal (all blocks of equal length occur equally frequently), and the maximal length of all-zero or all-one runs which occur with certainty.

Keywords

Computational Mathematic Maximal Length Equal Length Binary Sequence Finite Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. J. Chaitin, A theory of program size formally identical to information theory,J. Assoc. Comput. Mach.,22 (1975), 329–340.Google Scholar
  2. [2]
    T. Corman, C. Leiserson, and R. Rivest,Introduction to Algorithms, McGraw-Hill, New York, 1990.Google Scholar
  3. [3]
    P. Erdös and J. Spencer,Probabilistic Methods in Combinatorics, Academic Press, New York, 1974.Google Scholar
  4. [4]
    P. Gács, On the symmetry of algorithmic information,Soviet Math. Dokl,15 (1974), 1477–1480.Google Scholar
  5. [5]
    R. L. Graham, D. E. Knuth, and O. Patashnik,Concrete Mathematics, Addison-Wesley, Reading, MA, 1989.Google Scholar
  6. [6]
    D. E. Knuth,Seminumerical Algorithms, Addison-Wesley, Reading, MA, 1981.Google Scholar
  7. [7]
    A. N. Kolmogorov, Three approaches to the definition of the concept “quantity of information”,Problems Inform. Transmission,1(1) (1965), 1–7.Google Scholar
  8. [8]
    A. N. Kolmogorov, Combinatorial foundation of information theory and the calculus of probabilities,Russian Math. Surveys,38(4) (1983), 29–40.Google Scholar
  9. [9]
    L. A. Levin, Laws of information conservation (non-growth) and aspects of the foundation of probability theory,Problems Inform. Transmission,10 (1974), 206–210.Google Scholar
  10. [10]
    M. Li and P. M. B. Vitányi, Kolmogorov complexity and its applications, in:Handbook of Theoretical Computer Science, Vol. A (J. van Leeuwen, ed.), Elsevier/MIT Press, Amsterdam/Princeton, NJ, 1990, pp. 187–254.Google Scholar
  11. [11]
    M. Li and P. M. B. Vitányi, Kolmogorov complexity arguments in combinatorics,J. Combin. Theory Ser. A (to appear).Google Scholar
  12. [12]
    P. Martin-Löf, On the definition of random sequences,Inform, and Control,9 (1966), 602–619.Google Scholar
  13. [13]
    H. J. Rogers, Jr.,Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 1967.Google Scholar
  14. [14]
    V. G. Vovk,Theory Probab. Appl,32 (1987), 413–425.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1994

Authors and Affiliations

  • Ming Li
    • 1
  • Paul M. B. Vitányi
    • 2
  1. 1.Computer Science DepartmentUniversity of WaterlooWaterlooCanada
  2. 2.Centrum voor Wiskunde en InformaticaSJ AmsterdamThe Netherlands

Personalised recommendations