Advertisement

Algorithmica

, Volume 14, Issue 5, pp 409–428 | Cite as

Minimean optimal key arrangements in hash tables

  • A. C. -C. Yao
Article
  • 68 Downloads

Abstract

For an open-addressing hash functionh and a setA ofn keys, letCh(A) be the expected retrieval cost when the keys are arranged to minimize the expected retrieval cost in a full table. It is shown that, asymptotically for largen, whenh satisfies a certain doubly dispersive property, as is the case for double hashing,C h (A)=0(1) with probability 1 − 0(1) for a randomA.

Key words

Assignment problem Double hashing Hash tables Key arrangement Retrieval 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]
    R. P. Brent, Reducing the retrieval time of scatter storage techniques,Comm. ACM,16, 1973, 105–109.Google Scholar
  2. [G]
    G. H. Gonnet, Average lower bounds for open-addressing hash coding,Proceedings of the Conference on Theoretical Computer Science, University of Waterloo, Waterloo, Ontario, August 1977, pp. 159–162.Google Scholar
  3. [GM]
    G. H. Gonnet and J. I. Munro, Efficient ordering of hash tables,SIAM J. Comput.,8, 1979, 463–478.Google Scholar
  4. [GS]
    L. J. Guibas and E. Szemerédi, The analysis of double hashing,J. Comput. and System Sei.,16, 1978, 226–274.Google Scholar
  5. [H]
    P. Hall, On representations of subsets,J. London Math. Soc,10, 1935, 26–30.Google Scholar
  6. [Kal]
    R. M. Karp, A patching algorithm for the nonsymmetric traveling-salesman problem,SI AM J. Comput.,8, 1979, 561–573.Google Scholar
  7. [Ka2]
    R. M. Karp, An upper bound on the expected cost of an optimal assignment, inDiscrete Algorithms and Complexity, edited by D. S. Johnson, T. Nishizeki, A. Nozaki, and H. S. Wilf, Academic Press, New York, 1987, pp. 1–4.Google Scholar
  8. [Kn]
    D. E. Knuth,The Art of Computer Programming, Vol. 3, Addison-Wesley, Reading, MA, 1973.Google Scholar
  9. [L]
    A. Lazarus, The Assignment Problem with Uniform (0,1) Cost Matrix, B.A. Thesis, Department of Mathematics, Princeton University, 1979.Google Scholar
  10. [R]
    R. L. Rivest, Optimal arrangement of keys in a hash table,J. Assoc. Comput. Mach.,25, 1978, 200–209.Google Scholar
  11. [W]
    D. W. Walkup, On the expected value of a random assignment problem,SIAM J. Comput.,8, 1979, 440–442.Google Scholar
  12. [Y]
    A. C. Yao, On optimal arrangements of keys with double hashing,J. Algorithms,6, 1985, 253–264.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1995

Authors and Affiliations

  • A. C. -C. Yao
    • 1
  1. 1.Department of Computer SciencePrinceton UniversityPrincetonUSA

Personalised recommendations