Skip to main content
Log in

Ergodic group actions

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Akcoglu andA. del Junco, Convergence of averages of point transformations. Proc. Amer. Math. Soc.49, 265–266 (1975).

    Google Scholar 

  2. C. Chou, A. Lau andJ. Rosenblatt, Approximation of compact operators by sums of translations. Illinois J. Math.29, 340–350 (1985).

    Google Scholar 

  3. A. del Junco andJ. Rosenblatt, Counterexamples in ergodic theory and number theory. Math. Ann.245, 185–197 (1979).

    Google Scholar 

  4. N.Dunford and J.Schwartz, Linear Operators Vol. I. New York 1958.

  5. S. Foguel, Iterates of a convolution on a non-abelian group. Ann. Inst. H. Poincaré12, 199–202 (1975).

    Google Scholar 

  6. S. Glasner, On Choquet-Deny measures. Ann. Inst. H. Poincaré12, 1–10 (1976).

    Google Scholar 

  7. S. Horowitz, Pointwise convergence of the iterates of a Harris-recurrent Markov operator. Israel J. Math.33, 177–180 (1979).

    Google Scholar 

  8. J.Kelly, I.Namioka, et al., Linear Topological Spaces. Princeton 1963.

  9. G. Margulis, Some remarks on invariant means. Monatsh. Math.90, 233–235 (1980).

    Google Scholar 

  10. D. Ornstein andL. Sucheston, An operator theorem onL 1 convergence to zero with applications to Markov kernels. Ann. Math. Stat.41, 1631–1639 (1970).

    Google Scholar 

  11. D. Ornstein andB. Weiss, The Shannon-McMillan-Breiman theorem for a class of amenable groups. Israel J. Math.44, 53–61 (1983).

    Google Scholar 

  12. J. Rosenblatt, Ergodic and mixing random walks on locally compact groups. Math. Ann.257, 31–42 (1981).

    Google Scholar 

  13. J.Rosenblatt, Uniqueness of invariant means for measure-preserving transformations. Trans. Amer. Math. Soc. 623–636 (1981).

  14. J. Rosenblatt, Translation invariant linear forms onL p(G). Proc. Amer. Math. Soc.94, 226–228 (1985).

    Google Scholar 

  15. K. Schmidt, Amenability, Kazhdan's propertyT, strong ergodicity, and invariant means for ergodic group-actions. J. Ergodic Theory and Dyn. Systems1, 223–236 (1981).

    Google Scholar 

  16. D. Sullivan, Forn>3 there is only one finitely additive rotationally invariant measure on then-sphere defined on all Lebesgue measurable subsets. Bull. Amer. Math. Soc.4, 121–123 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by NSF Grant MCS 8402718.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenblatt, J. Ergodic group actions. Arch. Math 47, 263–269 (1986). https://doi.org/10.1007/BF01192003

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01192003

Keywords

Navigation