Skip to main content
Log in

A linear algebraic method for the calculation of pyroxene endmember components

Die Berechnung von Pyroxen-Endgliedern mit Methoden der Linearen Algebra

  • Published:
Tschermaks mineralogische und petrographische Mitteilungen Aims and scope Submit manuscript

Summary

A linear algebraic model for the sequence-independent calculation of pyroxene components of microprobe analyses is presented. Assuming ideal stoichiometry, the theoretical Fe3+ is obtained by using charge balance criteria. The calculation of 11 linearly-independent endmember parameters (Jd, Ac, Ur, TiTs, CaTs, FeTs, CrTs, Pm, Fs, En, Wo) in conjunction with a rigorous mass balance enables the appreciation of the stoichiometry and the endmember definition. The presented method offers a normalized comparison base for a wide spectrum of pyroxene analyses. On the basis of the 11 linearly-independent endmember parameters other common pyroxene components (e.g. Di, Hd, Jh, FeATs, CrATs, MgTs, Fe2+Ts) may be calculated using exchange reactions.

Zusammenfassung

Unter Verwendung von Methoden der Linearen Algebra wird eine reihenfolgenunabhängige Berechnung von Pyroxen-Endgliedern aus Mikrosondenanalysen vorgestellt. Die Annahme idealer Stöchiometrie ermöglicht die Bestimmung des theoretischen Fe3+ aus einer Ladungsbilanz. Die Berechnung von 11 linear-unabhängigen Pyroxen-Endgliedern (Jd, Ac, Ur, TiTs, CaTs, FeTs, CrTs, Pm, Fs, En, Wo) erfolgt unter einer strengen Massenbilanz und gewährleistet eine theoretische Auswertung der auferlegten Bedingungen über die Stöchiometrie und die Endgliederdefinition. Darüber hinaus stellt diese Methode eine normierte Vergleichsbasis für ein breites Spektrum von Pyroxenanalysen dar. Ausgehend von den 11 linear-unabhängigen Endgliedern können weitere in der Natur auftretende Pyroxen-Endglieder wie z.B. Di, Hd, Jh, FeATs, CrATs, MgTs, Fe2+ Ts mittels Austauschreaktionen berechnet werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen DJ (1980) The “others” substitutional couples in terrestrial pyroxenes Geol Soc Am Abstr Progr 12: 379

    Google Scholar 

  • Akasaka M (1983) 57 Mössbauer study of clinopyroxenes in the join CaFe3+ AlSiO6-CaTiAl2 O6 Phys Chem Min 9: 205–211

    Google Scholar 

  • Akasaka M, Onuma K (1980) The join CaMgSi2O6-CaFeAlSiO6-CaTiAl2O6 and its bearing on the Ti-rich fassaitic pyroxenes. Contr. Min Petrol 71: 301–312

    Google Scholar 

  • Cawthorn RG, Collerson KD (1974) The recalculation of pyroxene end-member parameters and the estimation of ferrous and ferric iron content from microprobe analyses. Am Min 59: 1203–1208

    Google Scholar 

  • Coleman RG, Lee DE, Beatty LB, Brannock WW (1965) Eclogites and eclogites: Their differences and similarities. Bull Geol Soc Am 76: 483–508

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1978) Rock-forming minerals Single-chain silicates, vol 2A. Longman, London

    Google Scholar 

  • Dietrich H, Petrakakis K (1984) Phase equilibria at high pressures of pyroxenes containing monovalent and trivalent ions. In: Prewitt CT (ed) Pyroxenes. Rev Min 7: 309–340

  • Green DH, Lockwood JP, Kiss E (1968) Eclogite and almandine-jadeite-quartz rock from the Guajira Peninsula, Columbia, South America. Am Min 53: 1320–1335

    Google Scholar 

  • Griffin WL, Mottana A (1982) Crystal chemistry of clinopyroxenes from the St. Marcel manganese deposit, Val d'Hosta, Italy, Am Min 67: 568–586

    Google Scholar 

  • Hamm HM, Vieten K (1971) Zur Berechnung der kristallchemischen Formel und des Fe3+-Gehaltes von Klinopyroxenen aus Eliktronenstrahl-Mikroanalysen N Jb Min Mh 310–314

  • Hess HH (1949) Chemical composition and optical properties of common clinopyroxenes. Am Min 34: 621–666

    Google Scholar 

  • Huckenholz HG, Schairer JF, Yoder HS Jr (1967) Synthesis and stability of ferri-diopside. Carnegie Inst Yearb 66: 335–347

    Google Scholar 

  • Ikeda K, Yagi K (1977) Experimental study on the phase equilibria in the join CaMgSi2O6-CaCrCrSiO6 with special reference to blue diopside. Contr. Min Petrol 61: 91–106

    Google Scholar 

  • Kuno H (1955) Ion substitution in the diopside-ferripigeonite series of clinopyroxenes. Am Min 40: 70–93

    Google Scholar 

  • Kushiro I (1962) Clinopyroxene solid solutions. Part 1. The CaAl2SiO6 component. Japan J Geol Georg 33: 213–220

    Google Scholar 

  • Kushiro I, Aoki K (1968) Origin of some eclogite inclusions in kimberlite. Am Min 53: 1347–1367

    Google Scholar 

  • Laird J, Albee AL (1981) High-pressure metamorphism in mafic schists from northem Vermont. Am J Sci 281: 97–126

    Google Scholar 

  • Mysen B, Griffin WL (1973) Pyroxene stoichiometry and the breakdown of omphacite. Am Min 58: 60–63

    Google Scholar 

  • Neumann ER (1976) Two refinements for the calculation of structural formulae for pyroxenes and amphiboles. Norsk Geol Tids 56: 1–6

    Google Scholar 

  • Papike JJ, Cameron KL, Baldwin K (1974) Amphiboles and pyroxenes: Characterization of other than quadrilateral components and estimates of ferric iron from microprobe data. Geol Soc Am Abstr Progr 6: 1053–1054

    Google Scholar 

  • Perry K Jr (1967) An application of linear algebra to petrologic problems: Part 1. Minearal classification. Geochim Cosmochim Acata 31: 1043–1078

    Google Scholar 

  • Petrakakis K, Dietrich H (1985) MINSORT: A program for the processing and archivation of microprobe analyses of silicate and oxide minerals. N Jb Min Mh 379–384

  • Schairer JF, Yoder HS Jr (1970) Critical planes and flow sheet for a protion of the sytem CaO-MgO-Al2O3-SiO2 having petrological applications. Carnegie Inst Yearb 68: 202–214

    Google Scholar 

  • Smyth JR (1980) Cation vacancies and the crystal chemistry at breakdown reactions in kimberlitic omphacites. Am Min 65: 1185–1191

    Google Scholar 

  • Spear FS, Rumble III D, Ferry JM (1982) Linear algebraic manipulation ofn-dimensional composition space. In: Ferry JM (ed) Characterization of metamorphism through mineral equilibria. Rev Min 10: 53–104

  • Vogel DE (1966) Nature and chemistry of the formation of clinopyroxene-plagioclase symplectite from omphacite. N Jb Min Mh 185–189

  • Warren BE, Biscoe J (1931) The crystal structure of the monoclinic pyroxenes. Z Krist 80: 391–401

    Google Scholar 

  • White AJR (1964) Clinopyroxenes from eclogites and basic granulites. Am Min 49: 883–888

    Google Scholar 

  • Wood BJ, Banno S (1973) Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contr Min Petrol 42: 109–124

    Google Scholar 

  • Wood BJ, Henderson CMB (1978) Compositions and unti-cell parameters of synthetic nonstoichiometric tschermakitic clinopyroxenes. Am Min 63: 66–72

    Google Scholar 

  • Yoder HS, Tilley CE (1962) Origin of basalt magmas: An experimental study of natural and synthetic rock systems. J Petrol 3: 342–532

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietrich, H., Petrakakis, K. A linear algebraic method for the calculation of pyroxene endmember components. TMPM Tschermaks Petr. Mitt. 35, 275–282 (1986). https://doi.org/10.1007/BF01191990

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01191990

Keywords

Navigation