Skip to main content
Log in

Zinc-positive boutons in the cerebral cortex of lizards show glutamate immunoreactivity

  • Published:
Journal of Neurocytology

Summary

Zinc-positive boutons, originating in the medial cortex of lizards, exhibit glutamate immunoreactivity. This finding supports the presumed homology between lizard zinc-positive boutons and the hippocampal mossy fibres of mammals, which are also glutamate-immunoreactive and zinc-positive.

Zinc-positive boutons of lizards contain a chelatable pool of zinc located in the synaptic vesicles, as occurs in the hippocampal mossy fibres of mammals. These synaptic systems also contain glutamate, which indicates a possible simultaneous action of zinc and glutamate during synaptic transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amaral, D. G. &Dent, J. A. (1981) Development of the mossy fibres of the dentate gyrus. I. A light and electron microscopic study of the mossy fibres and their expansions.Journal of Comparative Neurology 195, 51–86.

    Google Scholar 

  • Assaf, S. Y. &Chung, S. H. (1984) Release of endogenous Zn2+ from brain tissue during activity.Nature 308, 734–6.

    Google Scholar 

  • Bayer, S. A. (1980) Development of the hippocampal region in the rat. I. Neurogenesis examined with3H-thymidine autoradiography.Journal of Comparative Neurology 190, 87–114.

    Google Scholar 

  • Bayer, S. A., Yackel, J. W. &Puri, P. S. (1982) Neurons in the dentate gyrus granular layer substantially increase during juvenile and adult life.Science 216, 890–2.

    Google Scholar 

  • Bernstein, J., Fisher, R. S., Zaczek, R. &Coyle, J. (1985) Dipeptides of glutamate and aspartate may be endogenous neuroexcitants in the rat hippocampal slice.Journal of Neuroscience 5, 1429–33.

    Google Scholar 

  • Blackstad, T. W. &Kjaerheim, A. (1961) Special axondendritic synapses in the hippocampal cortex: electron and light microscopic studies on the layer of the mossy fibres.Journal of Comparative Neurology 117, 133–46.

    Google Scholar 

  • Cotman, C. W., Monaghan, D. T., Ottersen, O. P. &Storm-Mathisen, J. (1987) Anatomical organization of excitatory amino acid receptors and their pathways.Trends in Neurosciences 7, 273–80.

    Google Scholar 

  • Crawford, I. L. (1983) Zinc and the hippocampus: histology, neurochemistry, pharmacology and putative functional relevance. InNeurobiology of the Trace Elements (edited byDreosty, I. E. &Smith, R. M.) pp. 163–211. Clifton, NJ: Humana Press.

    Google Scholar 

  • Crawford, I. L. (1986) Relationship of glutamic acid and zinc to kindling of the rat amygdala: afferent transmitter systems and excitability in a model of epilepsy. InExcitatory Amino Acids and Epilepsy (edited bySchwarcz, R. &Ben-Ari, Y.) pp. 611–24. New York: Plenum Press.

    Google Scholar 

  • Danscher, G. (1981) Histochemical demonstration of heavy metals.Histochemistry 71, 1–16.

    Google Scholar 

  • Danscher, G. (1984) Do the Timm sulphide silver method and the selenium method demonstrate zinc in the brain? InThe neurobiology of Zinc. Part A: Physiochemistry, Anatomy and Techniques, (edited byFrederickson, C. J., Howell, G. A. &Kasarskis, E. J.) pp. 273–87. New York: Alan R. Liss.

    Google Scholar 

  • Danscher, G. &Zimmer, J. (1978). An improved Timm-sulphide method for light and electron microscopic localization of heavy metals in biological tissues.Histochemistry 55, 27–40.

    Google Scholar 

  • Fonnum, F. (1984) Glutamate: a neurotransmitter in mammalian brain.Journal of Neurochemistry 42, 1–11.

    Google Scholar 

  • Frederickson, C. J. (1989) Neurobiology of zinc and zinc containing neurons.International Review of Neurobiology 31, 145–238.

    Google Scholar 

  • Frotscher, M. (1989) Mossy fibre synapses on glutamate decarboxylase-immunoreactive neurons: evidence for feed-forward inhibition in the CA3 region of the hippocampus.Experimental Brain Research 75, 441–5.

    Google Scholar 

  • Haug, F. M. S. (1967) Electron microscopical localization of the zinc in hippocampal mossy fiber synapses by a modified sulfide silver procedure.Histochemie 8, 355–68.

    Google Scholar 

  • Hepler, J. R., Toomin, C. S., Mccarthy, K. D., Conti, F., Battaglia, G., Rustioni, A. &Petrusz, P. (1988) Characterization of antisera to glutamate and aspartate.Journal of Histochemistry and Cytochemistry 36, 13–22.

    Google Scholar 

  • Hoogland, P. V. &Vermeulen-Van Der Zee, E. (1988) Intrinsic and extrinsic connections of the cerebral cortex of lizards. InThe Forebrain of Reptiles: Current Concepts of Structure and Function (edited bySchwerdtfeger, W. K. &Smeets, W.) pp. 20–29. Basel: Karger.

    Google Scholar 

  • Howell, G. A., Welch, M. G. &Frederickson, C. J. (1984) Stimulation-induced uptake and release of zinc in hippocampal slices.Nature 308, 736–8.

    Google Scholar 

  • Hsu, S. M., Raine, L. &Fanger, H. (1981) Use of avidinbiotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabelled antibody (PAP) procedures.Journal of Histochemistry and Cytochemistry 29, 577–80.

    Google Scholar 

  • Klug, A. &Rhodes, D. (1987) “Zinc fingers”: a novel protein motif for nucleic acid recognition.Trends in Biochemical Sciences 12, 464–9.

    Google Scholar 

  • Kosaka, T., Nagatsu, I., Wu, J. -Y. &Hama, K. (1986) Use of high concentrations of glutaraldehyde for immunocytochemistry of transmitter-synthesizing enzymes in the central nervous system.Neuroscience 18, 975–90.

    Google Scholar 

  • Liu, C. Y., Grandes, P., Matute, C., Cuenod, M. &Streit, P. (1989) Glutamate-like immunoreactivity revealed in rat olfactory bulb, hippocampus and cerebellum by monoclonal antibody and sensitive staining method.Histochemistry 90, 427–45.

    Google Scholar 

  • Lopez-Garcia, C. &Martinez-Guijarro, F. J. (1988) Neurons in the medial cortex give rise to Timm-positive boutons in the cerebral cortex of lizards.Brain Research 463, 205–17.

    Google Scholar 

  • Lopez-Garcia, C., Molowny, A. &Perez-Clausell, J. (1983a) Volumetric and densitometric study in the cerebral cortex and septum of a lizard (Lacerta galloti) using the Timm method.Neuroscience Letters 40, 13–18.

    Google Scholar 

  • Lopez-Garcia, C., Soriano, E., Molowny, A., Garcia-Verdugo, J. M., Berbel, P. J. &Regidor, J. (1983b) The Timm-positive system of axonic terminals of the cerebral cortex ofLacerta, InRamon y Cajal's Contribution to the Neurosciences (edited byGrisolia, S. Guerri, C., Samson, F., Norton, S. &Reinoso-Suarez, F.) pp. 137–48. Amsterdam: Elsevier.

    Google Scholar 

  • Lopez-Garcia, C., Molowny, A., Perez-Clausell, J. &Martinez-Guijarro, F. J. (1984) A sulphide-osmium procedure for detection of metal containing synaptic boutons in the lizard cerebral cortex.Journal of Neuroscience Methods 11, 211–20.

    Google Scholar 

  • Lopez-Garcia, C., Martinez-Guijarro, F. J., Berbel, P. &Garcia Verdugo, J. M. (1988a) Long spined polymorphic neurons of the medial cortex of lizards: a Golgi, Timm and electron microscopic study.Journal of Comparative Neurology 272, 409–23.

    Google Scholar 

  • Lopez-Garcia, C., Molowny, A., Garcia-Verdugo, J. M. &Ferrer, I. (1988b) Delayed postnatal neurogenesis in the cerebral cortex of lizards.Developmental Brain Research 43, 167–74.

    Google Scholar 

  • Lopez-Garcia, C., Molowny, A., Rodriguez-Serna, R., Garcia-Verdugo, J. M. &Martinez-Guijarro, F. J. (1988c) Postnatal development of neurons in the telencephalic cortex of lizards. InThe Forebrain of Reptiles: Current Concepts of Structure and Function (edited bySchwerdtfeger, W. K. &Smeets, W.) pp. 122–30. Basel: Karger.

    Google Scholar 

  • Lopez-Garcia, C., Molowny, A., Garcia-Verdugo, J. M., Martinez-Guijarro, F. J. &Bernabeu, A. (1990) Late generated neurons in the medial cortex of adult lizards send axons that reach the Timm-reactive zones.Developmental Brain Research 57, 249–54.

    Google Scholar 

  • Lübbers, K. &Frotscher, M. (1987) Fine structure and synaptic connections of identified neurons in the rat fascia dentata.Anatomy and Embryology 177, 1–14.

    Google Scholar 

  • Madl, J. E., Larson, A. A. &Beitz, A. J. (1986) Monoclonal antibody specific for carbodiimide-fixed glutamate: immunocytochemical localization in the rat CNS.Journal of Histochemistry and Cytochemistry 34, 317–26.

    Google Scholar 

  • Martinez-Guijarro, F. J., Berbel, P. J., Molowny, A. &Lopez-Garcia, C. (1984) Apical dendritic spines and axonic terminals in the bipyramidal neurons of the dorsomedial cortex of lizards (Lacerta).Anatomy and Embryology 170, 321–6.

    Google Scholar 

  • Martinez-Guijarro, F. J., Molowny, A. &Lopez-Garcia, C. (1987) Timm staining intensity is correlated with densities of Timm-positive structures in the cerebral cortex of lizards.Histochemistry 86, 315–19.

    Google Scholar 

  • Martinez-Guijarro, F. J., Desfilis, E. &Lopez-Garcia, C. (1990) Organization of the dorsomedial cortex in the lizardPodarcis hispanica. InThe Forebrain in Nonmammals:New Aspects of Structure and Development (edited bySchwerdtfeger, W. K. &Germroth, P.) pp. 77–92. Berlin: Springer-Verlag.

    Google Scholar 

  • Martinez-Guijarro, F. J., Soriano, E., Del Rio, A. &Lopez-Garcia, C. (1991) Parvalbumin-immunoreactive neurons in the cerebral cortex of the lizardPodarcis hispanica. Brain Research (in press).

  • Matute, C., Liu, C. Y., Grandes, P., Cuenod, M. &Streit, P. (1987) Glutamate-like immunoreactivity revealed in rat brain by monoclonal antibody and sensitive staining method.Society of Neuroscience Abstracts 13, 1562.

    Google Scholar 

  • Molowny, A. &Lopez-Garcia, C. (1978) Estudio citoarquitectonico de la corteza cerebral de reptiles. III: localizacion histoquimica de metales pesados y definicion de subregiones Timm-positivas en la corteza deLacerta, Chalcides, Tarentola yMalpdon.Trabajos del Instituto Cajal de Investigaciones Biologicas 70, 55–74.

    Google Scholar 

  • Molowny, A., Martinez-Calatayud, J., Juan, M. J., Martinez-Guijarro, F. J. &Lopez-Garcia, C. (1987) Zinc accumulation in the telencephalon of lizards.Histochemistry 86, 311–14.

    Google Scholar 

  • Novikoff, A. B., Novikoff, P. M., Quintana, M. &Davis, C. (1972) Diffusion artifacts in 3,3′-diaminobenzidine cytochemistry.Journal of Histochemistry and Cytochemistry 20, 745–9.

    Google Scholar 

  • Ottersen, O. P. &Storm-Mathisen, J. (1984) Glutamate and GABA containing neurones in the mouse and rat brain, as demonstrated with a new immunocytochemical technique.Journal of Comparative Neurology 229, 374–92.

    Google Scholar 

  • Ottersen, O. P. &Storm-Mathisen, J. (1985) Different neuronal localization of aspartate-like and glutamate-like immunoreactivities in the hippocampus of rat, guinea pig and Senegalese baboon (Papio papio) with a note on the distribution of GABA.Neuroscience 16, 589–606.

    Google Scholar 

  • Perez-Clausell, J. &Danscher, G. (1985) Intravesicular localization of zinc in rat telencephalic boutons. A histochemical study.Brain Research 337, 91–8.

    Google Scholar 

  • Peters, S., Koh, J. &Choi, D. W. (1987) Zinc selectively blocks the action ofn-methyl-d-aspartate on cortical neurons.Science 236, 589–93.

    Google Scholar 

  • Schwerdtfeger, W. K. &Lopez-Garcia, C. (1986) GABA-ergic neurons in the cerebral cortex of the brain of a lizard (Podarcis hispanica).Neuroscience Letters 68, 117–21.

    Google Scholar 

  • Somogyi, P. &Soltesz, I. (1986) Immunogold demonstration of GABA in synaptic terminals of intracellularly recorded, horseradish peroxidase-filled basket cells and clutch cells in the cat's visual cortex.Neuroscience 19, 1051–65.

    Google Scholar 

  • Stanfield, B. B. &Trice, J. E. (1988) Evidence that granule cells generated in the dentate gyrus of adult rats extend axonal projections.Experimental Brain Research 72, 399–406.

    Google Scholar 

  • Storm-Mathisen, J., Leknes, A. K., Bore, A. T., Vaaland, J. L., Edminson, P., Haug, F. M. S. &Ottersen, O. P. (1983) First visualization of glutamate and GABA in neurons by immunocytochemistry.Nature 301, 517–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez-Guijarro, F.J., Soriano, E., Del Rio, J.A. et al. Zinc-positive boutons in the cerebral cortex of lizards show glutamate immunoreactivity. J Neurocytol 20, 834–843 (1991). https://doi.org/10.1007/BF01191734

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01191734

Keywords

Navigation