Skip to main content
Log in

Calmodulin blockers decrease short-term plasticity of the cholinoreceptors of neurons of the edible snail

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

A reversible decrease in the rate and depth of the extinction of the reactions of the cholinoreceptive membrane to repeated iontophoretic applications of acetylcholine to the soma by a number of calmodulin blockers way demonstrated in identified RPa3 and LPa3 neurons in the edible snail using the method of recording transmembrane ionic currents: R 24571 (20–50 μmoles/liter), trifluoperazine (50–200 μmoles/liter), chlorpromazine (20–60 μnoles/liter), and prenylamine lactate (30–400 μmoles/liter). The results obtained attest to the positive regulation of short-term plasticity of the cholinoreceptors of the neurons in question by calmodulin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. B. I. Kotlyar and A. S. Pivovarov, “The molecular mechanisms of the plasticity of the neuron during learning: the role of secondary intermediaries,”Zhurn. Vyssh. Nervn. Deyat.,39, No. 2, 195–214 (1989).

    Google Scholar 

  2. S. N. Orlov, “Calmodulin,” in: Itogi Nauki i Tekhniki VINTTI AN SSSR;General Problems of Physicochemical Biology, Vol. 8 [in Russian], VINITI (1987), pp. 5–212.

  3. B. I. Kotlyar, E. I. Drozdova, and A. S. Pivovarov, “A study of the role of cyclic 3′,5′-adenosine monophosphate in the extinction of the reactions of identified neurons of the edible snail to acetylcholine,”Biol. Nauki, No. 11, 54–61 (1988).

    Google Scholar 

  4. B. I. Kotlyar, E. I. Drozdova, and A. S. Pivovarov, “Secondary intermediaries in the regulation of the plasticity of the nerve cell during learning,”Biol. Nauki, No. 3, 75–101 (1989).

    Google Scholar 

  5. B. I. Kotlyar, E. I. Drozdova, and A. S. Pivovarov, “The calcium regulation of the short-term plasticity of the cholinoreceptors of the RPa3 and LPa3 neurons of the edible snail,”Zhurn. Vyssh. Nervn. Deyat.,40, No. 1, 135–142 (1990).

    Google Scholar 

  6. A. S. Pivovarov and G. N. Saganelidze, “The modulation by calcium ions of the short-term plasticity of the cholinoreceptive membrane of mollusc neurons,”Zhurn. Vyssh. Nervn. Deyat.,36, No. 5, 947–955 (1986).

    Google Scholar 

  7. E. S. Severin and M. N. Kochetkova,The Role of Phosphorylation in the Regulation of Cell Activity [inRussian], Nauka, Moscow (1985).

    Google Scholar 

  8. L. E. Tsitolovskii, “The plasticity of the electrically excitable membrane of the neuron under conditions of the blockade of calmodulin,”Zhurn. Vyssh. Nervn. Deyat., 34, No. 1, 163–165 (1984).

    Google Scholar 

  9. J. Acosta-Urquidi, D. L. Alkon, and J. T. Leary, “Ca2+ dependent protein kinase injection in a photoreceptor mimics biophysical effects of associative learning,”Science,224, No. 4654, 1254–1257 (1984).

    PubMed  Google Scholar 

  10. D. L. Alkon, “Changes of membrane currents during learning,”J. Exptl Biol.,112, 95–112 (1984).

    Google Scholar 

  11. D. L. Alkon and S. Naito, “Biochemical mechanisms of memory storage,”J. Physiol.,81, No. 4, 252–260 (1986).

    Google Scholar 

  12. W. Y. Cheung, “Calmodulin: an overview,”Federal. Proc.,41, No. 7, 2253–2257 (1986).

    Google Scholar 

  13. Y. Dudai, “Some properties of adenylate cyclase which might be important for memory formation,”FEBS Letters,191, No. 2, 165–170 (1985).

    PubMed  Google Scholar 

  14. R. C. Finn, M. Browning, and G. Lynch, “Trifluoperazine inhibits hippocampal long-term potentiation and the phosphorylation of 40,000 dalton protein,”Neurosci. Lett.,19, No. 1, 103–108 (1980).

    PubMed  Google Scholar 

  15. C. B. Klee, T. H. Crouch, and P. G. Richman, “Calmodulin,”Ann. Rev. Biochem.,49, 489–516 (1980).

    PubMed  Google Scholar 

  16. M. A. Lynch and T. V. P. Bliss, “Long-term potentiation of synaptic transmission in the hippocampus in the rat: effect of calmodulin and oleoyl-acetyl-glycerol on release of [3H] glutamate,”Neurosci. Lett.,65, No. 2, 171–176 (1986).

    PubMed  Google Scholar 

  17. I. Mody, R. G. Baimbridge, and J. J. Miller, “Blockade of tetanic- and calcium-induced long-term potentiation in the hippocampal slice preparation by neuroleptics,”Neuropharmacology,23, No. 6, 625–631 (1984).

    PubMed  Google Scholar 

  18. J. T. Neary and D. L. Alkon, “Protein phosphorylation-dephosphorylation and the transient, voltage-dependent potassium conductance in Hermissenda crassicornis,”J. Biol. Chem., 258, No. 14, 8979–8983 (1983).

    PubMed  Google Scholar 

  19. M. Sakakibara, D. L. Alkon, R. De Lorenzo, et al., “Modulation of calcium-mediated inactivation of ionic currents by Ca2+/calmodulin/dependent protein kinase II,”Biophys. J.,50, No. 2, 319–327 (1986).

    PubMed  Google Scholar 

  20. T. Tanaka, “Calmodulin-dependent calcium signal transduction,”Japan J. Pharmacol. 46, No. 2, 101–107 (1988).

    Google Scholar 

  21. C. D. Woody, D. L. Alkon, and B. Hay, “Depolarization-induced effects of Ca2+-calmodulin-dependent protein kinase injection, in vivo, in single neurons of cat motor cortex,”Brain Res.,321, No. 1, 192–197 (1984).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel'nosti imeni I. P. Pavlova, Vol. 40, No. 3, pp. 535–542, May–June, 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pivovarov, A.S., Drozdova, E.I. & Kotlyar, B.I. Calmodulin blockers decrease short-term plasticity of the cholinoreceptors of neurons of the edible snail. Neurosci Behav Physiol 21, 289–295 (1991). https://doi.org/10.1007/BF01191567

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01191567

Keywords

Navigation