Skip to main content
Log in

Physikalische Grundlagen zur relativen biologischen Wirksamkeit verschiedener Strahlenarten

  • Published:
Biophysik Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Abel, H.: Die physikalischen Parameter der relativen biologischen Wirksamkeit ionisierender Strahlung. In: Probleme und Ergebnisse aus Biophysik und Strahlenbiologie. Ed.Pfennigsdorf, G., u.W. Eckart. Berlin: Akademie-Verl. 1960.

    Google Scholar 

  2. Alexander, P., J. T. Lett, P. Kopp andR. Itzhaki: Degradation of dry Deoxyribonucleic acid by Polonium alpha-particles. Radiat. Res.14, 363 (1961).

    PubMed  Google Scholar 

  3. Alper, T.: The modification of damage caused by primary ionization of biological targets. Radiat. Res.5, 573 (1956).

    PubMed  Google Scholar 

  4. Askar'jan, G. A.: Die hydrodynamische Emission aus den Bahnen ionisierender Teilchen in stabilen Flüssigkeiten. Kernenergie1, 396 (1957).

    Google Scholar 

  5. Barendsen, G. E., T. L. J. Beusker, A. J. Vergrossen andL. Budke: Effects of different ionizing radiations on human cells in tissue culture. II. Biological Experiments. Radiat. Res.13, 841 (1960).

    PubMed  Google Scholar 

  6. Bender, M. A., andP. C. Gooch: Persistent chromosome aberrations in irradiated human subjects. Radiat. Res.16, 44 (1962).

    PubMed  Google Scholar 

  7. Bethe, H.: Quantenmechanik der Ein- und Zwei-Elektronenprobleme. In: Handbuch der Physik, Bd. 24/1. Ed.Geiger H., u.H. Scheel. Berlin: Springer. 1933.

    Google Scholar 

  8. Birkhoff, R. D.: The passage of fast electrons through matter. In:Flügge, S.: Handbuch der Physik, Bd. 34, Berlin-Göttingen-Heidelberg: Springer 1958.

    Google Scholar 

  9. Boag, J. W.: The distribution of linear energy transfer or “Ion Density” for fast neutrons in water. Radiat. Res.1, 323 (1954).

    PubMed  Google Scholar 

  10. Brustad, T.: The radiosensitivity of dried trypsin as a function of temperature and LET. Second international congress of radiation research, 1962, Paper D-3-b.

  11. —: Heavy ions and some aspects of their use in molecular and cellular radiobiology. In: Advanc. biol. med. Phys.8, 161 (1962).

    Google Scholar 

  12. Burch, P. R. J.: Calculations of energy dissipation characteristics in water for various radiations. Radiat. Res.6, 289 (1957).

    Google Scholar 

  13. —: Some physical aspects of relative biological efficiency. Brit. J. Radiol.30, 524 (1957). s. a.Haynes, H., and G. W.Dolphin: The calculation of linear energy transfer, with special reference to a 14 MeV electron beam and 10 MeV per nucleon ion beams. Phys. in Med. Biol.4, 148 (1959).

    PubMed  Google Scholar 

  14. Cooper, G. W., J. G. van Dyke, J. J. Nickson andJ. S. Laughlin: The relative biological efficiency of 20 MeV-electrons and 250 kVp X-rays as measured in the 12-day-old chick embryo. Radiat. Res.16, 686 (1962).

    PubMed  Google Scholar 

  15. Cormack, D. V., andH. E. Johns: Electron energies and ion densities in water irradiated with 200 keV, 1 MeV and 25 MeV radiation. Brit. J. Radiol.25, 369 (1952).

    PubMed  Google Scholar 

  16. Czulius, W., H. D. Engler undH. Kuckuck: Halbleiter-Sperrschichtzähler. Ergebn. exakt. Naturwiss.34, 236 (1962).

    Google Scholar 

  17. Deering, R. A.: Mutations and killing of Escherischia coli WP-2 by accelerated heavy ions and other radiations. Radiat. Res.19, 169 (1963).

    PubMed  Google Scholar 

  18. —, andR. Rice: Heavy ion irradiation of Hela Cells. Radiat. Res.17, 774 (1962).

    PubMed  Google Scholar 

  19. Dittrich, W.: Der lineare Energietransfer in der Treffertheorie. Z. Naturforsch.16 b, 398 (1961).

    Google Scholar 

  20. Dolphin, G. W., andF. Hutchinson: The action of fast carbon and heavier ions on biological materials. I. The inactivation of dried encymes. Radiat. Res.13, 403 (1960).

    PubMed  Google Scholar 

  21. Easter, S. S., andF. Hutchinson: Effects of radiations of differentLET on artemia eggs. Radiat. Res.15, 333 (1961).

    PubMed  Google Scholar 

  22. Failla, G., andP. S. Henshaw: The relative biological effectiveness of X-rays and Gamma-rays. Radiology17, 1 (1931).

    Google Scholar 

  23. Fano, U.: Atomic theory of electromagnetic interactions in dense materials. Physic. Rev.103, 1202 (1956).

    Google Scholar 

  24. —: Normal modes of a lattice of oscillators with many resonances and dipolar coupling. Physic. Rev.118, 451 (1960).

    Google Scholar 

  25. Fluke, D. J., T. Brustad, andAnn C. Birge: Inactivation of dry T-1 Bacteriophage by Helium ions, Carbon ions, and Oxygen ions: Comparison of effect for tracks of various ion density. Radiat. Res.13, 788 (1960).

    PubMed  Google Scholar 

  26. Fritz-Niggli, Hedi: Strahlengenetik der Drosophila. In: Strahlenbiologie, Strahlentherapie, Nuklearmedizin und Krebsforschung, Ergebnisse 1952–1958. Ed.Schinz, H. R., H. Holthusen, H. Langendorff, B. Rajewsky undG. Schubert. Stuttgart: Thieme-Verlag 1959.

    Google Scholar 

  27. Gauthé, B.: Electron characteristic energy losses in some intermetallic compounds. Physic. Rev.114, 1265 (1959).

    Google Scholar 

  28. Gray, L. H.: The distribution of the ions resulting from the irradiation of living cells. Brit. J. Radiol. Suppl.1, 7 (1947).

    Google Scholar 

  29. harder, D., H.Feist, and A.Rausche: Slowing down of fast electrons. Second International Congress of Radiation Research, 1962, Paper E-4-6-d.

  30. Feist, H., u.D. Harder: Energieverteilungen bei der Bremsung schneller Elektronen in dicken Materieschichten. Physik. Verh.14, 133 (1963).

    Google Scholar 

  31. Harder, D., G. Harigel undK. Schultze: Bahnspuren schneller Elektronen. Strahlentherapie115, 1 (1961).

    PubMed  Google Scholar 

  32. Henriksen, T., T. Sanner, andA. Pihl: Transfer of radiation-induced unpaired spins from proteins to Sulfur compounds. Radiat. Res.18, 163 (1963).

    PubMed  Google Scholar 

  33. Hochanadel, C. J.: Evidence for „Thermal Spikes“ in the alpha-particle radiolysis of nitrate crystals. Radiat. Res.16, 286 (1962).

    PubMed  Google Scholar 

  34. Howard-Flanders, P.: Physical and chemical mechanisms in the injury of cells by ionizing radiations. Advanc. biol. mod. Phys.6, 553 (1958).

    Google Scholar 

  35. Hrishi, B., Branville: Studies on the RBE's of thermal neutrons for survival and mutation at a specific locus in diploid yeast. Radiat. Res.16, 609 (1962) Abstr.

    Google Scholar 

  36. Hug, O., u.A. Kellerer: Zur Interpretation der Dosiswirkungsbeziehungen in der Strahlenbiologie. Biophysik1, 20 (1963).

    Google Scholar 

  37. Hutchinson, F.: Modifying factors in the inactivation of biological macromoleoules. Radiat. Res. Suppl.2, 49 (1960).

    Google Scholar 

  38. —, andE. Pollard: Target theory and radiation effects on biological molecules. In: Mechanisms in Radiobiology. Ed.Errera, M., andA. Forssbebg. New York u. London: Acad Press 1961.

    Google Scholar 

  39. — —: Physical principles of radiation action. In: Mechanisms in Radiobiology. Ed.Errera, M., andA. Forssberg: New York u. London: Acad Press 1961.

    Google Scholar 

  40. International Commission on Radiological Units and Measurements (ICRU): Report 1959 (Handbook 78, NBS, Washington).

    Google Scholar 

  41. —: Radiation Quantities and Units, Report 10a, 1962. (Handbook 80, NBS, Washington).

    Google Scholar 

  42. Itzhaki, R. F., andP. Alexander: The effect of polonium alpha-rays on the physical properties of polyaethylene and of polymethyl methacrylate. Radiat. Res.15, 553 (1961).

    Google Scholar 

  43. Kellerer, A., u.O. Hug: Zur Kinetik der Strahlenwirkung. Biophysik1, 33 (1963).

    Google Scholar 

  44. Kühn, H.: Zur Inaktivierung von Milchsäuredehydrogenase mit langsamen Protonen. Z. Naturforsch.15 b, 227 (1960).

    Google Scholar 

  45. Kuppermann, A., andGeneva G.Belford: Variation of chemical yields with LET along tracks of densely ionizing particles. Second International Congress of Radiation Research, Paper A-6-3-b.

  46. Lamerton, L. F.: Linear energy transfer. In: Radiation Effects in Physics, Chemistry and Biology. Second International Congress of Radiation Research, 1962, Ed.Ebert, M., andA. Howard. Amsterdam, North-Holland Publ. Comp..

    Google Scholar 

  47. Lea, D. E.: Actions of radiations on living cells. Cambridge: Univ. Press 1956.

    Google Scholar 

  48. Leder, L., andL. Marton: Effect of chemical combination on the characteristic energy loss of electrons. Physic. Rev.95, 1345 (1954).

    Google Scholar 

  49. —: Electron characteristic energy loss in metals and compounds. Physic. Rev.103, 1721 (1956).

    Google Scholar 

  50. —, andL. Marton: Temperature dependence of the characteristic energy loss of electrons in aluminium. Physic. Rev.112, 341 (1958).

    Google Scholar 

  51. Leskowitz, I., J. G.van Dyke, J. S. Laughlin, andJ. J. Nickson: The relative biological efficiency of 20 MeV electrons and 180-kVp X-rays in Escherischia Coli inactivation. Radiat. Res.13, 445 (1960).

    PubMed  Google Scholar 

  52. Lett, J. T., K. A. Stacey, andP. Alexander: Crosslinking of dry deoxyribonucleic acids by electrons. Radiat. Res.14, 349 (1961).

    PubMed  Google Scholar 

  53. Manney, T. R., T. Brustad, andC. A. Tobias: Effects of glycerol and of anoxia on the radiosensitivity of haploid yeasts to densely ionizing particles. Radiat. Res.18, 374 (1963).

    Google Scholar 

  54. Markus, B., u.Elisabeth Sticinsky: Der Einfluß des Energiespektrums von 14 MeV—Elektronen und die vergleichsweise Wirkung von 14 MeV-Elektronen, 14 MeV— und 200 kV-Röntgenstrahlen auf Drosophila-Eier. Strahlentherapie120, 262 (1963);115, 394 (1961).

    Google Scholar 

  55. Markus, B.: Biologische Wirkungen schneller Elektronen. SRW-Nachrichten, Heft 17–l9, 1962/63.

  56. Mohler, F. L., andL. S. Taylor: J. Research NBS, Washington,13, 659 (1934).

    Google Scholar 

  57. Monesi, V.: Relation between X-ray sensitivity and stages of the cell cycle in spermatogonia of the mouse. Radiat. Res.17, 809 (1962).

    PubMed  Google Scholar 

  58. Munroe, T. R.: Alpha irradiation of parts of single cells in tissue culture. J. exp. Cell. Res.18, 76 (1959).

    Google Scholar 

  59. Neary, G. J., J. R. K. Savage, andH. J. Evans: The influence of exposure time on the yield of chromosomal aberrations in Tradescantia Pollen grains produced by fast neutrons and gamma radiation. In: Effects of Ionizing Radiations on Seeds, IAEA, Wien 1961.

    Google Scholar 

  60. Norman, A., andP. Spiegler: Radiation nucleation of bubbles in water. Nuclear Sci. Engng.16, 213 (1963).

    Google Scholar 

  61. ——: A thermal decomposition model for radiation damage in solids. Radiat. Res.16, 599 (1962).

    Google Scholar 

  62. - - Thermal spikes in water. Second Intern Congress of Radiation Research, 1962, Paper A-6-3-c.

  63. Oberheuser, F., u.H. A. Künkel: Ultrafraktionierung und relative biologische Wirksamkeit schneller Elektronen, Versuche an Drosophilaembryonen verschiedener Entwicklungsstadien. Biophysik1, 11 (1963).

    Google Scholar 

  64. Ore, A.: Radiat. Res.6, 27 (1957).

    Google Scholar 

  65. Peters, K., u.G. Breitling: Biologische Studien zur Energieübertragung hochenergetischer Elektronen. Strahlentherapie122, 83 (1963).

    PubMed  Google Scholar 

  66. Pollard, E., andC. Vogler: Radiation action on some metabolic processes in E. coli. Radiat. Res.15, 109 (1961).

    PubMed  Google Scholar 

  67. —: Radiation inactivation of encymes, nucleic acids, and phage particles. Rev. mod. Physics31, 273 (1959).

    Google Scholar 

  68. —,W. R. Guild, F. Hutchinson, andR. B. Setlow: The direct action of ionizing radiation on enzymes and antigens. Progr. Biophys.5, 72 (1955).

    Google Scholar 

  69. Powers, E. L., R. B. Webb, andC. F. Ehret: Storage transfer and utilization of energy from X-rays in dry bacterial spores. Radiat. Res. Suppl.2, 94 (1960).

    Google Scholar 

  70. Puck, T. T.: Quantitative studies on mammalian cells in vitro. Rev. mod. Physics31, 433 (1959).

    Google Scholar 

  71. —, andM. Yamada: Chromosome dynamics in irradiated mammalian cells. Radiat. Res.16, 589 (1962) Abstr.

    Google Scholar 

  72. Quastler, H.: Radiation effects in vivo: Molecular aspects of mammalian radiobiology. Radiat. Res. Suppl.2, 627 (1960).

    Google Scholar 

  73. Rajewsky, B.: Evalution of linear energy transfer. In: Quantities, units and measuring methods of ionizing radiation. Symposium, Rom 1958. Ed.Fossati, F. Mailand: Verl. Ulrico Hoepli.

    Google Scholar 

  74. Rauth, A. M., andR. Hutchinson: Distribution in energy of the primary energy loss events of electrons in condensed media. In: Biological effects of ionizing radiation at the molecular level. Symposium, IAEA, Wien 1962.

    Google Scholar 

  75. Read, J.: Aspects of radiation damage likely to be involved in tumor regression. Brit. J. Radiol.31, 60 (1958).

    PubMed  Google Scholar 

  76. Report of the RBE Committee to the International Commissions on Radiological Protection and on Radiological Units and Measurements. Health Physics9, 357 (1963).

    Google Scholar 

  77. Rossi, H. H.: Specification of radiation quality. Radiat. Res.10, 522 (1959).

    PubMed  Google Scholar 

  78. —: Spatial distribution of energy deposition by ionizing radiation. Radiat. Res. Suppl.2, 290 (1960).

    Google Scholar 

  79. —: Distribution of radiation energy in the cell. Radiology,78, 530 (1962).

    PubMed  Google Scholar 

  80. —,J. L. Bateman, V. P. Bond, L. J. Goodman, andE. E. Stickley: The dependence of RBE on the energy of fast neutrons. I. Physical design and measurement of absorbed dose. Radiat. Res.13, 503 (1960).

    PubMed  Google Scholar 

  81. Bateman, J. L., H. H. Rossi, V. P. Bond, andJ. Gilmartin: The dependence of RBE on energy of fast neutrons. II. Biological evaluation at discrete neutron energies in the range 0,43 to 1,8 MeV. Radiat. Res.15, 694 (1961). Biophysik, Bd. 1

    PubMed  Google Scholar 

  82. Ruthemann, G.: Ann. Physik.2, 113 (1948).

    Google Scholar 

  83. Samuel, A. H., and J. S.Mills: Track diffusion-recombination model with a scavenger. Second International Congress of Radiation Research, 1962, Paper A-6-3-a.

  84. v.Sanden, K.: Zur treffertheoretischen Deutung des Zusammenhangs zwischen Steilheit der Dosis-Effektkurve und Ionisationsdichte. Z. Naturforsch.4 b, 257 (1949).

    Google Scholar 

  85. Sayeg, J. A., Ann C. Birge, C. A. Beam, andC. A. Tobias: The effects of accelearted carbon nuclei and other radiations on the survival of haploid yeast II. Radiat. Res.10, 449 (1959).

    PubMed  Google Scholar 

  86. Setlow, R.: Action Spectroscopy. Advanc. biol. med. Phys.5, 37 (1957).

    Google Scholar 

  87. —: Ultraviolet wave-length-dependent effects on proteins and nucleic acids. Radiat. Res. Suppl.2, 276 (1960).

    Google Scholar 

  88. Sinclair, W. K.: The relative biological effectiveness of 22 MeVp X-rays, Cobalt-60 gamma rays, and 220 kVp X-rays. Radiat. Res.16, 394 (1962).

    PubMed  Google Scholar 

  89. —,S. E. Gunter, andA. Cole: The relative biological effectiveness of 200-kVp X-rays, Cobalt-60-gamma-rays, and 22 MeVp X-rays, determined from the dose-survival curve of saccharomyces cerevisiae. Radiat. Res.10, 418 (1959).

    PubMed  Google Scholar 

  90. Sommermeyer, K.: Die Entwicklung der Treffertheorie seit dem Jahre 1946 unter besonderer Berücksichtigung ihrer Anwendung auf biologische Wirkung energiereicher Strahlen. In: Strahlenbiologie, Strahlentherapie, Nuklearmedizin und Krebsforschung, Ergebnisse 1952–1958. Ed.Schinz, H. R., H. Holthusen, H. Langendorff, B. Rajewsky undG. Schubert: Stuttgart: Thieme-Verlag 1959.

    Google Scholar 

  91. Sommermeyer, K., u.K. Philipp: Die Bedeutung und Berechnung der primären Ionisationen in der Treffertheorie. Z. Naturforsch.14 b, 33 (1959).

    Google Scholar 

  92. Spencer, L. V., andU. Fano: Energy spectrum resulting from electron slowing down. Physic. Rev.93, 1172 (1954).

    Google Scholar 

  93. Stein, W.: Inaktivierungsversuche mit homozygoten Hefestämmen verschiedenen Ploidiegrades. V. Treffertheoretische Betrachtungen. Z. Naturforsch.17 b, 179 (1962).

    Google Scholar 

  94. Sternheimer, R. M.: The energy loss of a fast charged particle by Cerenkov radiation. Physic. Rev.91, 256 (1953).

    Google Scholar 

  95. Till, J. E.: Radiosensitivity and chromosome numbers in strain L mouse cells in tissue culture. Radiat. Res.15, 400 (1961).

    PubMed  Google Scholar 

  96. Timoféeff-Ressovsky, N. W., u.K. G. Zimmer: Das Trefferprinzip in der Biologie. Leipzig: Hirzel-Verlag 1947.

    Google Scholar 

  97. Wachsmann, F. u. G.Korb: Biophysik2, (1964).

  98. Wideroe, R.: Physikalische Untersuchungen zur Therapie mit hochenergetischen Elektronenstrahlen, Strahlentherapie113, 161 (1960).

    PubMed  Google Scholar 

  99. Wintzer, D.: Messungen von Energieverlusten langsamer Elektronen in dünnen Schichten organischer Substanzen. In: Probleme und Ergebnisse aus Biophysik und Strahlenbiologie II. Ed.Pfennigsdorf, G., u.W. Eckardt. Berlin: Akademie-Verlag 1960.

    Google Scholar 

  100. Zimmer, K. G.: The development of quantum biology during the last decade. Acta Radiol. (Stockh.)46, 595 (1956).

    Google Scholar 

  101. —: Studien zur quantitativen Strahlenbiologie, Akad. d. Wiss. u. d. Literatur in Mainz, Nr. 3. Wiesbaden: Steiner 1960.

    Google Scholar 

  102. Zirkle, R. E.: Partial-cell irradiation. Advanc. biol. med. Phys.5, 103 (1957).

    Google Scholar 

  103. —, andW. Bloom: Irradiations of parts of individual cells. Science117, 487 (1953).

    PubMed  Google Scholar 

  104. —: The radiobiological importance of the energy distribution along ionization tracks. J. cell. comp. Physiol.16, 221 (1940).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Vortrag auf Einladung.

Für die Gelegenheit zur Benutzung eines Rechenautomaten Zuse Z 22 R des Instituts für Angewandte Mathematik der Universität Würzburg sei Herrn Prof.Sommer vielmals gedankt. Für briefliche und mündliche Diskussionen während der Bearbeitung des Manuskripts gilt Herrn Dr.Kühn, Herrn Dr.Markus und Herrn Prof.breitling mein herzlicher Dank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harder, D. Physikalische Grundlagen zur relativen biologischen Wirksamkeit verschiedener Strahlenarten. Biophysik 1, 225–258 (1964). https://doi.org/10.1007/BF01191308

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01191308

Navigation