Skip to main content
Log in

Electrophysiological analysis of efferent neurons of cat associative parietal cortex

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

We have studied in acute experiments the neurons of the associative parietal cortex in the cat, using the microelectrode take-off technique. We identified the efferent neurons sending axons to the sensomotor cortex, the red nucleus, and the pontine nuclei by antidromic stimulation. We investigated the collateral branching of axons of neurons projected simultaneously into two of the formations mentioned, using the impulse collision technique. We studied the characteristics of the spatial distribution of efferent neurons in the parietal cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. A. S. Batuev, Higher Integral Brain Systems [in Russian], Nauka, Leningrad (1981), p. 255.

    Google Scholar 

  2. V. N. Kazakov and A. M. Dolgopolov, “Convergence of corticofugal impulses on neurons of the bridge of Varolius,” Neirofiziologiya,12, No. 5, 472–480 (1980).

    Google Scholar 

  3. G. A. Tolchenova, “Neuronal organization of cat parietal cortex,” in: Nervous System [in Russian], Leningrad State University (1978), No. 18, pp. 16–30.

    Google Scholar 

  4. V. V. Fanardzhyan and V. L. Gorodnov, “Postsynaptic processes in rubro-spinal neurons of cat brain on different corticofugal actions,” Neirofiziologiya,16, No. 1, 67–74 (1984).

    Google Scholar 

  5. G. I. Allen, H. Korn, T. Oshima, and K. Toyama, “The mode of synaptic linkage in the cerebro-ponto-cerebellar pathway of the cat. II. Response of single cells in the pontine nuclei,” Exp. Brain Res.,24, No. 1, 15–36 (1975).

    Google Scholar 

  6. G. I. Allen and N. Tsukahara, “Cerebro-cerebellar communication system,” Phys. Rev.,54, No. 4, 957–1006 (1974).

    Google Scholar 

  7. H. Asanuma and R. W. Hunspercer, “Functional significance of projection from the cerebellar nuclei to the motor cortex in the cat,” Brain Res.,98, No. 1, 73–92 (1975).

    Google Scholar 

  8. S. Blomfield and D. Marr, “How the cerebellum may be used,” Nature (London),227, No. 5264, 1224–1228 (1970).

    Google Scholar 

  9. R. E. Foster, J. P. Donoghue, and F. F. Ebner, “Laminar organization of efferent cells in the parietal cortex of the Virginia opposum,” Exp. Brain Res.,43, No. 3–4, 330–336 (1981).

    Google Scholar 

  10. J. H. Fuller, “Brain stem reticular units; some properties of the course and origin of the ascending trajectory,” Brain Res.,83, No. 3, 349–369 (1975).

    Google Scholar 

  11. M. Ito, T. Hongo, M. Yoshida, T. Okada, and K. Obata, “Antidromic and transsynaptic activation of Deiters' neurons induced from the spinal cord,” Jpn. J. Physiol.,14, No. 6, 638–658 (1964).

    Google Scholar 

  12. K. Kawamura, “Cortico-cortical fiber connections in the cat cerebrum. II. The parietal region,” Brain Res.,51 (complete), 23–40 (1973).

    Google Scholar 

  13. L. Leinonen, J. Hyvärinen, and A. R. A. Sovijari, “Functional properties of neurons in the temporo-parietal association cortex of awake monkey,” Exp. Brain Res.,39, No. 2, 203–215 (1980).

    Google Scholar 

  14. M. Mabuchi and T. Kusama, “Cortico-rubral projection in the cat,” Brain Res.,2, No. 3, 254–273 (1966).

    Google Scholar 

  15. V. B. Mountcastle, J. C. Lynch, A. Georcopouls, H. Sacata, and C. Acuna, “Posterior parietal association cortex of the monkey; command functions for operations within extrapersonal space,” J. Neurophysiol.,38, No. 4, 871–907 (1975).

    Google Scholar 

  16. H. Oka and K. Jinnai, “Electrophysiological study of parvocellular red nucleus neurons,” Brain Res.,149, No. 1, 239–247 (1978).

    Google Scholar 

  17. K. Sasaki, S. Kawaguchi, T. Shimono, and S. Prelevic, “Electrophysiological studies of the pontine nucleus,” Brain Res.,20, No. 3, 425–438 (1970).

    Google Scholar 

  18. V. Shinoda, C. Chez, and A. Arnold, “Spinal branching of rubrospinal axons in the cat,” Exp. Brain Res.,30, No. 2/3, 203–218 (1977).

    Google Scholar 

  19. P. L. Strick and C. C. Kim, “Input to primate motor cortex from posterior parietal cortex (area 5). I. Demonstration of retrograde transport,” Brain Res.,157, No. 2, 325–331 (1978).

    Google Scholar 

  20. P. Zarzecki, P. L. Strick, and H. Asanuma, “Input to primate motor cortex from posterior parietal cortex (area 5). II. Identification by antidromic activation,” Brain Res.,157, No. 2, 331–336 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Fiziologicheskii Zhurnal SSSR imeni I. M. Sechenova, Vol. 72, No. 7, pp. 865–873, July, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popoyan, E.V., Fanardzhyan, V.V. Electrophysiological analysis of efferent neurons of cat associative parietal cortex. Neurosci Behav Physiol 17, 251–258 (1987). https://doi.org/10.1007/BF01191259

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01191259

Key words

Navigation