New necessary conditions on the existence of abelian difference sets


In this paper we develop a new method to obtain identities in a group algebraGF(p)G if an abelian difference set of ordern≡0 (modp) exists inG. We give an explicit formula ifp 2 orp 3 is the exactp-power dividingn. This generalizes the approach of Wilbrink, Arasu and the author. The proof presented here uses some knowledge about field extensions of thep-adic numbers.

This is a preview of subscription content, access via your institution.


  1. [1]

    K. T. Arasu: On Wilbrink's theorem.J. Comb. Th. (A) 44 (1987), 156–158

    Google Scholar 

  2. [2]

    K. T. Arasu: Another variation of Wilbrink's theorem,Ars Combinatoria 25 (1988), 107–109.

    Google Scholar 

  3. [3]

    K. T. Arasu andA. Pott: Relative difference sets with multiplier 2,Ars Combinatoria 27 (1989), 139–142.

    Google Scholar 

  4. [4]

    T. Beth, D. Jungnickel andH. Lenz Design Theory, Bibliographisches Institut, Mannheim, 1985; Cambridge University Press, Cambridge, 1986.

    Google Scholar 

  5. [5]

    B. Huppert:Endliche Gruppen I, Springer, Berlin, 1967.

    Google Scholar 

  6. [6]

    D. Jungnickel: An elementary proof of Wilbrink's theorem,Archiv Math. 52 (1989), 615–617.

    Google Scholar 

  7. [7]

    E. S. Lander:Symmetric Designs: An Algebraic Approach, Cambridge University Press, Cambridge, 1983.

    Google Scholar 

  8. [8]

    A. Pott: Applications of the DFT to abelian difference sets,Archiv Math. 51 (1988), 283–288.

    Google Scholar 

  9. [9]

    A. Pott: An affine analogue of Wilbrink's theorem,J. Comb. Th. (A) 55 (1990), 313–315.

    Google Scholar 

  10. [10]

    H. A. Wilbrink: A note on planar difference sets,J. Comb. Th. (A) 38 (1985), 94–95.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pott, A. New necessary conditions on the existence of abelian difference sets. Combinatorica 12, 89–93 (1992).

Download citation

AMS subject classification (1991)

  • 05 B 10