Diametric theorems in sequence spaces


We determine in almost all Manhattan lattices configurations, which for specified diameter have maximal cardinality. Cases, in which those configurations are spheres, have been studied recently by Kleitman and Fellows.

For Hamming spaces we present a partial result supplementing a result of Frankl and Füredi and we formulate a general conjecture.

This is a preview of subscription content, access via your institution.


  1. [1]

    R. Ahlswede, andG. O. H. Katona: Contributions to the Geometry of Hamming Spaces,Disc. Math. 17 (1977), 1–22.

    Google Scholar 

  2. [2]

    P. Frankl, andZ. Füredi: The Erdős-Ko-Rado Theorem for Integer Sequences,SIAM J. Alg. Disc. Meth. Vol 1, No.4 (1980), 316–381.

    Google Scholar 

  3. [3]

    G. O. H. Katona: Intersection Theorems for Systems of Finite Sets,Acta Math. Acad. Sci. Hungar. 15 (1964), 329–337.

    Google Scholar 

  4. [4]

    D. J. Kleitman: On a Combinatorial Problem of Erdős,J. Comb. Theory 1 (1986), 209–214.

    Google Scholar 

  5. [5]

    A. Moon: An Analogue of Erdős-Ko-Rado Theorem for the Hamming SchemesH(n, q), J. Comb. Theory A 32 (1982), 386–390.

    Google Scholar 

  6. [6]

    D. J. Kleitman, andM. Fellows: Radius and Diameter in Manhattan Lattices, Preprint 1986.

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ahlswede, R., Cai, N. & Zhang, Z. Diametric theorems in sequence spaces. Combinatorica 12, 1–17 (1992). https://doi.org/10.1007/BF01191200

Download citation

AMS subject classification (1991)

  • 05 A 20
  • 52 C 17
  • 05 D 05