Advertisement

Biophysik

, Volume 3, Issue 1, pp 65–93 | Cite as

Zellproliferation in normalen und malignen Geweben:3H-Thymidin-Einbau in vitro unter Standardbedingungen

  • M. F. Rajewsky
Article

Zusammenfassung

Infolge der Einführung radioaktiv markierter DNA-Vorstufen haben sich die experimentellen Möglichkeiten zur Messung der Zellproliferation normaler und maligner Gewebe verbessert. Besonders auch Probleme des Wachstums menschlicher Tumoren können jetzt mit mehr Aussicht auf Erfolg bearbeitet werden. In diesem Zusammenhang wird über die Charakteristika einer standardisierten In-vitro-Technik zum Einbau von3H-Thymidin in Explantate aus verschiedenen Geweben von Ratte und Maus berichtet. Mit Hilfe von Autoradiographie und Flüssigkeitsszmtillationszählung wurden die Kinetik des3H-Thymidin-Einbaus und die Verteilung der DNA-synthetisierenden Zellen in den Explantaten in Abhängigkeit vom O2-Partialdruck analysiert. Bei den untersuchten Geweben waren die gemessenen Einbauwerte (relative3H-Aktivität pro mg Gewebe) den entsprechenden nach In-vivo-Pulsmarkierung autoradiographisch bestimmten Thymidin-Markierungsindices in guter Näherung proportional. Es wird die Möglichkeit diskutiert, mit Hilfe der verwendeten Methode die mittleren Thymidin-Markierungsindices von Geweben mit unbekannter proliferativer Aktivität (Tumoren) abzuschätzen.

Summary

The introduction of the use of labelled DNA precursors into cell proliferation research has resulted in better techniques for the measurement of cell population kinetics in normal and malignant tissues. There is now an increased chance of being able to successfully deal with the problems of the growth of human tumours. In this context, the characteristics of a standardised in vitro technique for the measurement of3H-thymidine incorporation into expiants of various tissues of rats and mice are described. With the aid of autoradiography and liquid scintillation counting, the kinetics of3H-thymidine incorporation were analysed as was also the distribution of labelled cells in the explants as a function of O2 partial pressure. The relative tritium activity per mg wet weight is proportional to the autoradiographic labelling index for the tissues which were investigated. The applicability of the standardised in vitro technique for the prediction of thymidine labelling indices of tissues with unknown proliferative activities (tumours) is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Adelstein, S. J., C. P. Lyman, andR. C. O'Brien: Variations in the incorporation of thymidine into the DNA of some rodent species. Comp. Biochem. Physiol.12, 223 (1964).Google Scholar
  2. [2]
    Baserga, R., G. C. Henegar, W. E. Kisieleski, andH. Lisco: Uptake of tritiated thymidine by human tumors in vivo. Lab. Invest.11, 360 (1962).Google Scholar
  3. [3]
    —, andW. E. Kisieleski: Recent observations on cell proliferation and metabolism by radioautography with tritiated compounds. Atompraxis8, 386 (1962).Google Scholar
  4. [4]
    Bertalanffy, F. D.: Tritiated thymidine versus colchicine technique in the study of cell population cytodynamics. Lab. Invest.13, 871 (1964).Google Scholar
  5. [5]a)
    Bianchi, P. A., J. A. V. Butler, A. R. Crathorn, andK. V. Shooter: The thymidine phosphorylating kinases. Biochim. biophys. Acta (Amst.)48, 213 (1961).Google Scholar
  6. [5]b)
    Bianchi, P. A., J. A. V. Butler, A. R. Crathorn, andK. V. Shooter: The thymidine phosphorylating kinases. Biochim. biophys. Acta (Amst.)53, 123 (1961).Google Scholar
  7. [6]
    Bielka, H.: Über Beziehungen zwischen Stoffwechsel und Wachstum von Tumoren. Acta biol. med. germ.1, 61 (1958).Google Scholar
  8. [7]
    Blum, H. F.: Estimation of growth rate of tumours. J. nat. Cancer Inst.4, 21 (1943).Google Scholar
  9. [8]
    Bollum, F. J.: Mammalian enzymes of deoxyribonucleic acid synthesis. Ann. N. Y. Acad. Sci.81, 792 (1959).Google Scholar
  10. [9]
    Bray, G. A.: A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Analyt. Biochem.1, 279 (1960).Google Scholar
  11. [10]
    Bresciani, F.: DNA synthesis in alveolar cells of the mammary gland: Acceleration by ovarian hormones. Science146, 653 (1964).Google Scholar
  12. [11]
    —: A comparison of the cell generative cycle in normal, hyperplastic and neoplastic mammary gland of the C3H mouse. In Cellular radiation biology. 18. Annual symposium on fundamental cancer research, page 547. The University of Texas M. D. Anderson Hospital and Tumor Institute. Baltimore: The Williams and Wilkins Company 1965.Google Scholar
  13. [12]
    Bush, E. T.: General applicability of the channels ratio method of measuring liquid scintillation counting efficiencies. Anal. Chem.35, 1024 (1963).Google Scholar
  14. [13]
    Cairnie, A. B., L. F. Lamerton, andG. G. Steel: Cell proliferation studies in the intestinal epithelium of the rat. II. Theoretical aspects. Exp. Cell Res.39, 539 (1965).Google Scholar
  15. [14]
    Cameron, I. L.: Is the duration of DNA synthesis in somatic cells of mammals and birds a constant ?. J. cell Biol.20, 185 (1964).Google Scholar
  16. [15]
    Cattaneo, S. M., H. Quastler, andF. G. Sherman: Proliferative cycle in the growing hair follicle of the mouse. Nature (Lond.)190, 923 (1961).Google Scholar
  17. [16]
    Chambers, H., andG. M. Scott: Variations in the growth of Jensen's rat sarcoma and the influence of technique. J. Path. Bact.33, 553 (1930).Google Scholar
  18. [17]
    Collins, V. P., R. K. Loeffler, andH. Tivey: Observations on growth rates of human tumors. Amer. J. Roentgenol.76, 988 (1956).Google Scholar
  19. [18]
    Defendi, V., andL. A. Manson: Analysis of the life-cycle in mammalian cells. Nature (Lond.)198, 359 (1963).Google Scholar
  20. [19]
    Earle, W. R., J. C. Bryant, andE. L. Schilling: Certain factors limiting the size of the tissue culture and the development of massive cultures. Ann. N. Y. Acad. Sci.58, 1000 (1954).Google Scholar
  21. [20]
    Engelberg, J.: A method of measuring the degree of synchronisation of cell populations. Exp. Cell. Res.23, 218 (1961).Google Scholar
  22. [21]
    Feulgen, R., u.H. Rossenbeck: Mikroskopisch-chemischer Nachweis einer Nucleinsäure vom Typus der Thymonucleinsäure und die darauf beruhende elektive Färbung von Zellkernen in mikroskopischen Präparaten. Hoppe-Seylers Z. physiol. Chem.135, 203 (1924).Google Scholar
  23. [22]
    Finkel, M. P., P. J. Bergstrand, andB. O. Biskis: The latent period, incidence and growth of Sr90-induced osteosarcomas in CF1 and CBA mice. Radiology77, 269 (1961).Google Scholar
  24. [23]
    Fitzgerald, P. J., M. L. Eidinoff, J. E. Knoll, andE. B. Simmel: Tritium in radioautography. Science114, 494 (1951).Google Scholar
  25. [24]
    Garland, L. H., W. Coulson, andE. Wollin: The rate of growth and apparent duration of untreated primary carcinoma. Cancer (Philad.)16, 694 (1963).Google Scholar
  26. [25]
    Gershon-Cohen, J., S. M. Berger, andH. S. Klickstein: Roentgenography of breast cancer moderating concept of „biologic” predeterminism. Cancer (Philad.)16, 961 (1963).Google Scholar
  27. [26]
    Gerstenberg, E.: Röntgenologischer Beitrag zum Problem der Tumorzellkinetik. In Krebsforschung und Krebsbekämpfung. Band V. Achte Tagung des Dt. Zentralaussch. f. Krebsbekämpfung u. Krebsforschung e. V. Ed. H. A. Gottron, S. 193. München-Berlin: Urban & Schwarzenberg 1964.Google Scholar
  28. [27]
    Haddow, A.: Biological characters of spontaneous tumours of the mouse, with special reference to rate of growth. J. Path. Bact.47, 553 (1938).Google Scholar
  29. [28]
    Hanks, J. H., andR. E. Wallace: Relation of oxygen and temperature in the preservation of tissues by refrigeration. Proc. Soc. exp. Biol. (N. Y.)71, 196 (1949).Google Scholar
  30. [29]
    Harbers, E.: Die Nucleinsäuren. Stuttgart: G. Thieme Verlag 1964.Google Scholar
  31. [30]
    Hauschka, T. S.: The chromosomes in ontogeny and oncogeny. Cancer Res.21, 957 (1961).Google Scholar
  32. [31]
    Hilscher, W., u.W. Maurer: Autoradiographische Bestimmung der Dauer der DNS-Verdoppelung und ihres zeitlichen Verlaufes bei Spermatogonien der Ratte durch Doppelmarkierung mit C-14- und H-3-Thymidin. Naturwissenschaften49, 352 (1962).Google Scholar
  33. [32]
    Howard, A., andS. R. Pelc: Nuclear incorporation of P-32 as demonstrated by autoradiographs. Exp. Cell Res.2, 178 (1951).Google Scholar
  34. [33]
    Hughes, W. L.: The metabolic stability of deoxyribonucleic acid. In The kinetics of cellular proliferation. Ed.F. Stohlmann Jr., p. 83. New York: Grune & Stratton 1959.Google Scholar
  35. [34]
    —,S. L. Commerford, D. Gitlin, R. C. Krueger, B. Schulze, V. Shah, andP. Reilly: Deoxyribonucleid acid metabolism in vivo: I. Cell proliferation and death as measured by incorporation and elimination of iododeoxyuridine. Fed. Proc.23, 640 (1964).Google Scholar
  36. [35]
    Ingleby, H., L. Moore, andJ. Gershon-Cohen: A roentgenographic study of the growth rate of 6 ‚early‘ cancers of the breast. Cancer (Philad.)11, 726 (1958).Google Scholar
  37. [36]
    Johnson, H. A.: Some problems associated with the histological study of cell proliferation kinetics. Cytologia (Tokyo)26, 32 (1961).Google Scholar
  38. [37]
    —, andV. P. Bond: A method of labeling tissues with tritiated thymidine in vitro and its use in comparing rates of cell proliferation in duct epithelium, fibroadenoma and carcinoma of human breast. Cancer (Philad.)14, 639 (1961).Google Scholar
  39. [38]
    —,W. E. Haymaker, J. R. Rubini, T. M. Fliedner, V. P. Bond, E. P. Cronkite, andW. L. Hughes: A radioautographic study of a human brain and glioblastoma multiforme after the in vivo uptake of tritiated thymidine. Cancer (Philad.)13, 636 (1960).Google Scholar
  40. [39]
    —,J. R. Rubine, E. P. Cronkite, andV. P. Bond: Labeling of human tumor cells in vivo by tritiated thymidine. Lab. Invest.9, 460 (1960).Google Scholar
  41. [40]
    Kalbereb, F., u.J. Rutschmann: Eine Schnellmethode zur Bestimmung von Tritium, Radiokohlenstoff und Radioschwefel in beliebigem organischen Probenmaterial mittels des Flüssigkeits-Scintillations-Zählers. Helv. chim. Acta242, 1957 (1961).Google Scholar
  42. [41]
    Kihara, H. K., M. Amano, andA. Sibatani: Stability of deoxypentose nucleic acid in growing livers of young rats. Biochim. biophys. Acta (Amst.)21, 489 (1956).Google Scholar
  43. [42]
    Killmann, S. A., E. P. Cronkite, T. M. Fliedner, andV. P. Bond: Cell proliferation in multiple myeloma studied with tritiated thymidine in vivo. Lab. Invest.11, 845 (1962).Google Scholar
  44. [43]
    — —,J. S. Robertson, T. M. Fliedner, andV. P. Bond: Estimation of phases of the life cycle of leukemic cells from labeling in human beings in vivo with tritiated thymidine. Lab. Invest.12, 671 (1963).Google Scholar
  45. [44]
    Kit, S.: Early changes following virus infection: Thymidine kinase induction in cells infected with vaccinia and herpes simplex viruses. In Viruses, nucleic acids and cancer. 17. Annual symp. on fundamental cancer research. The University of Texas M. D. Anderson Hospital and Tumor Institute, p. 296. Baltimore: The Williams and Wilkins Comp. 1963.Google Scholar
  46. [45]
    Koburg, E.: Autoradiographische Untersuchungen zum Nueleinsäurestoffwechsel einzelner Zellarten der Lunge. Verh. dtsch. Ges. Path.44, 160 (1960).Google Scholar
  47. [46]
    Kopriwa, B. M., andC. P. Leblond: Improvements in the coating technique of radioautography. J. Histochem. Cytochem.10, 269 (1962).Google Scholar
  48. [47]
    Krogh, A.: The rate of diffusion of gases through animal tissues, with some remarks on the coefficient of invasion. J. Physiol. (Lond.)52, 391 (1919).Google Scholar
  49. [48]
    Leblond, C. P.: Classical technics for the study of the kinetics of cellular proliferation. In The kinetics of cellular proliferation. Ed.F. Stohlmann Jr., p. 31. New York: Grune & Stratton 1959.Google Scholar
  50. [49]
    Leevy, C. M.: In vitro studies of hepatic DNA synthesis in percutaneous liver biopsy specimens. J. Lab. clin. Med.61, 761 (1963).Google Scholar
  51. [50]
    Lesch, R., W. Schiessle undW. Oehlert: Autoradiographische Untersuchungen zur DNS-Synthese an menschlichem Exzisionsmaterial aus dem Bronchialbaum. Beitr. path. Anat.129, 296 (1963).Google Scholar
  52. [51]
    Ludford, R. J.: Action of toxic substances upon division of normal and malignant cells in vitro and in vivo. Arch. exp. Zeilforsch.18, 411 (1936).Google Scholar
  53. [52]
    Maruyama, Y.: Reutilisation of thymidine during death of a cell. Nature (Lond.)201, 93 (1964).Google Scholar
  54. [53]
    Mayneord, M. V.: On a law of growth of Jensen's rat sarcoma. Amer. J. Cancer16, 841 (1932).Google Scholar
  55. [54]
    McIlwain, H., andH. L. Buddle: Techniques in tissue metabolism. I. A mechanical chopper. Biochem. J.53, 412 (1953).Google Scholar
  56. [55]
    Mendelsohn, M. L.: Autoradiographic analysis of cell proliferation in spontaneous breast cancer of C3H mouse. III. The growth fraction. J. nat. Cancer Inst.28, 1015 (1962).Google Scholar
  57. [56]
    —: Chronic infusion of tritiated thymidine into mice with tumors, Science135, 213 (1962).Google Scholar
  58. [51]
    —: The kinetics of tumor cell proliferation. In Cellular radiation biology. 18. Annual symposium on fundamental cancer research. The University of Texas M. D. Anderson Hospital and Tumor Institute, p. 498. Baltimore: The Williams and Wilkins Company 1965.Google Scholar
  59. [58]
    —,F. C. Dohan Jr., andH. A. Moore Jr.: Autoradiographic analysis of cell proliferation in spontaneous breast cancer of C3H mouse. I. Typical cell cycle and time of DNA synthesis. J. nat. Cancer Inst.25, 477 (1960).Google Scholar
  60. [59]
    Messier, B., andC. P. Leblond: Cell proliferation and migration as revealed by radioautography after injection of thymidine-H3 into male rats and mice. Amer. J. Anat.106, 247 (1960).Google Scholar
  61. [60]
    Morgan, J. F.: Development of synthetic media. In Methods of tissue culture. Ed.R. C. Parker, p. 115. New York: P. B. Hoeber Inc. 1950.Google Scholar
  62. [61]
    Morris, H. P.: Diet and some other environmental influences on the genesis and growth of mammary tumors in mice. In A symposium on mammary tumors in mice. Ed.R. F. Moulton, p. 140. Washington: Amer. Ass. Adv. Sc. 1945.Google Scholar
  63. [62]
    Nathan, M. H., V. P. Collins, andR. A. Adams: Differentiation of benign and malignant pulmonary nodules by growth rate. Radiology79, 221 (1962).Google Scholar
  64. [63]
    Oehlert, W., P. Dörmer undR. Lesch: Autoradiographische Untersuchungen über die DNS-Synthese im überlebenden Tumorgewebe des Menschen. Beitr. path. Anat.128, 468 (1963).Google Scholar
  65. [64]
    —, u.R. Lesch: Autoradiographische Untersuchungen des BNS- und DNS-Stoffwechsels in menschlichen Tumoren. Europ. J. Cancer1, 295 (1965).Google Scholar
  66. [65]
    Painter, R. B., andR. M. Drew: Studies on deoxyribonucleic acid metabolism in human cancer cell cultures (HeLa). I. Lab. Invest.8, 278 (1959).Google Scholar
  67. [66]
    Patt, H. M., andH. Quastler: Radiation effects on cell renewal and related systems. Physiol. Rev.43, 357 (1963).Google Scholar
  68. [67]
    Pelc, S. R.: Labelling of DNA and cell division in so called non-dividing tissues. J. cell Biol.22, 21 (1964).Google Scholar
  69. [68]
    Pernice, B.: Sulla cariocinesi delle cellule epiteliali e dell' endotelio dei vasi della mucosa dello stomaco e dell' intestino, nello studio della gastro-enterite sperimentale (nell' avvelenamento per colchico). Sicilia Medica1, 265 (1889).Google Scholar
  70. [69]
    Pilgrim, C., W. Erb, andW. Maurer: Diurnal fluctuations in the numbers of DNA synthesizing nuclei in various mouse tissues. Nature (Lond.)199, 863 (1963).Google Scholar
  71. [70]
    —, u.W. Maurer: Autoradiographische Bestimmung der DNS-Verdoppelungszeit verschiedener Zellarten von Maus und Ratte bei Doppelmarkierung mit3H- und14C-Thymidin. Naturwissenschaften49, 544 (1962).Google Scholar
  72. [71]
    — —: Autoradiographische Untersuchung über die Konstanz der DNS-Verdoppelungsdauer bei Zellarten von Maus und Ratte durch Doppelmarkierung mit3H- und14C-Thymidin. Exp. Cell Res.37, 183 (1965).Google Scholar
  73. [72]
    Potter, R. L.: Zitiert in [59].Google Scholar
  74. [73]
    Potter, V. R.: Metabolic products formed from thymidine. In The kinetics of cellular proliferation. Ed.F. Stohlman Jr., p. 104. New York: Grüne & Stratton 1959.Google Scholar
  75. [74]
    Quastler, H.: Cell population kinetics. Ann. N. Y. Acad. Sci.90, 580 (1960).Google Scholar
  76. [75]
    —: The analysis of cell population kinetics. In Cell proliferation. Eds.L. E. Lamerton andR. J. M. Fry, p. 18. Oxford: Blackwell Scientific Publ. 1963.Google Scholar
  77. [76]
    —, andF. G. Sherman: Cell population kinetics in the intestinal epithelium of the mouse. Exp. Cell Res.17, 420 (1959).Google Scholar
  78. [77]
    Rajewsky, M. F.: Thymidin-Inkorporation und O2Konzentration in Explantaten normaler und maligner Gewebe ‚in vitro’. Naturwissenschaften52, 341 (1965).Google Scholar
  79. [78]
    —: In vitro studies of cell proliferation in tumours — II. Characteristics of a standardised in vitro system for the measurement of3H-thymidine incorporation into tissue expiants. Europ. J. Cancer1, 281 (1965).Google Scholar
  80. [79]
    -, W.Dauber, and H.Frankenberg: Liver carcinogenesis by diethylnitrosamine in the rat: Effect of discontinuation of dosage combined with partial hepatectomy and modification of liver response by chronic irradiation. Science 1966 (Im Druck).Google Scholar
  81. [80]
    Reichard, P., andB. Estborn: Utilisation of desoxyribosides in the synthesis of polynucleotides. J. biol. Chem.188, 839 (1951).Google Scholar
  82. [81]
    Rubini, J. R., E. P. Cronkite, V. P. Bond, andT. M. Fliedner: The metabolism and fate of tritiated thymidine in man. J. clin. Invest.39, 909 (1960).Google Scholar
  83. [82]
    Schneider, W. C.: Phosphorus compounds in animal tissues. I. Extraction and estimation of deoxypentose nucleic and of pentose nucleic acid. J. biol. Chem.161, 293 (1945).Google Scholar
  84. [83]
    —: Deoxyribosides in animal tissues. J. biol. Chem.216, 287 (1955).Google Scholar
  85. [84]
    Schöniger, W.: Eine mikroanalytische Schnellbestimmung von Halogenen in organischen Substanzen. Mikrochim. Acta1, 123 (1955).Google Scholar
  86. [85]
    Schrek, R.: A quantitative study on the growth of the Walker rat tumor and the Flexner-Jobling rat carcinoma. Amer. J. Cancer24, 807 (1935).Google Scholar
  87. [86]
    —: A comparison of the growth curves of malignant and normal (embryonic and postembryonic) tissues of the rat. Amer. J. Path.12, 525 (1936).Google Scholar
  88. [87]
    Schultze, B., andW. Oehlert: Autoradiographic investigations of incorporation of H-3-thymidine into cells of the rat and mouse. Science181, 737 (1960).Google Scholar
  89. [88]
    Schwartz, M.: A biomathematical approach to clinical tumor growth. Cancer (Philad.)14, 1272 (1961).Google Scholar
  90. [89]
    Schwarz, H., u.G. Wolff: Mathematische Betrachtungen zum Wachstum von Geschwülsten. Acta biol. med. germ.13, 378 (1964).Google Scholar
  91. [90]
    Sisken, J. E., andR. Kinosita: Timing of DNA synthesis in the mitotic cycle in vitro. J. biophys. biochem. Cytol.9, 509 (1961).Google Scholar
  92. [91]
    Spratt, J. S., andL. V. Ackermann: The growth of a colonie adenocarcinoma. Amer. Surg.27, 23 (1961).Google Scholar
  93. [92]
    Standers, C. P., andJ. E. Till: DNA-synthesis in individual L-strain mouse cells. Biochim. biophys. Acta (Amst.)37, 406 (1960).Google Scholar
  94. [93]
    Steel, G. G., and J. C.Barrett: (1966) (In Vorbereitung).Google Scholar
  95. [94]
    —, andJ. P. M. Bensted: In vitro studies of cell proliferation in tumours. I: Critical appraisal of methods and theoretical considerations. Europ. J. Cancer1, 275 (1965).Google Scholar
  96. [95]
    —, andL. F. Lamerton: The turnover of tritium from thymidine in tissues of the rat. Exp. Cell Res.37, 117 (1965).Google Scholar
  97. [96]
    Stohlman, T. Jr. (Ed.): The kinetics of cellular proliferation. New York: Grune & Stratton 1959.Google Scholar
  98. [97]
    Taylor, J. H., P. S. Woods, andW. L. Hughes: The organisation and duplication of chromosomes as revealed by autoradiographic studies using tritium-labeled thymidine. Proc. nat. Acad. Sci. (Wash.)43, 122 (1957).Google Scholar
  99. [98]
    Thomlinson, R. H., andL. H. Gray: The histological structure of some human lung cancers and the possible implication for radiotherapy. Brit. J. Cancer9, 539 (1955).Google Scholar
  100. [99]
    Warburg, O.: The metabolism of tumours. Constable (London) (1930).Google Scholar
  101. [100]
    —: Über die Entstehung der Krebszellen. Naturwissenschaften42, 401 (1955).Google Scholar
  102. [101]
    —,K. Posener undE. Negelein: Über den Stoffwechsel der Carcinomzelle. Biochem. Z.152, 309 (1924).Google Scholar
  103. [102]
    Weissman, S. M., R. M. S. Smellie, andJ. Paul: Studies on the biosynthesis of deoxyribonucleic acid by extracts of mammalian cells: IV. The phosphorylation of thymidine. Biochim. biophys. Acta (Amst.)45, 101 (1960).Google Scholar
  104. [103]
    Welin, S., J. Youker, andJ. S. Spratt: The rates and patterns of growth of 375 tumours of the large intestine and rectum observed serially by double contrast enema study (Malmö technique). Amer. J. Roentgenol.90, 673 (1963).Google Scholar
  105. [104]
    Wimber, D. E.: Methods for studying cell proliferation with emphasis on DNA labels. In Cell proliferation. Eds.L. E. Lamerton andR. J. M. Fry, p. 1. Oxford: Blackwell Scientific Publ. 1963.Google Scholar
  106. [105]
    —:, andH. Quastler: A C14- an H3-thymidine double labeling technique in the study of cell proliferation in Tradescantia root tips. Exp. Cell Res.30, 8 (1963).Google Scholar
  107. [106]
    Wolberg, W. H.: Studies on the mechanism of human tumor resistance to the fluorinated pyrimidines. Cancer Res.24, 1437 (1964).Google Scholar
  108. [107]
    —:, andR. R. Brown: Autoradiographic studies of in vitro incorporation of uridine and thymidine by human tumor tissue. Cancer Res.22, 1113 (1962).Google Scholar
  109. [108]
    Wrba, H., u.H. Rabes: Zur Methode der quantitativen Bestimmung des Umsatzes an markierten Stoffen durch Organkulturen. Exp. Cell Res.26, 62 (1962).Google Scholar
  110. [109]
    Wright, C. P.: The relative duration of the various phases of mitosis in chick fibroblasts cultivated in vitro. J. Roy. Micr. Soc.414 (1925).Google Scholar
  111. [110]
    Young, R. W.: Cell proliferation and specialization during endochondral osteogenesis in young rats. J. cell Biol.14, 357 (1962).Google Scholar
  112. [111]
    Literatur bei [69].Google Scholar

Copyright information

© Springer-Verlag 1966

Authors and Affiliations

  • M. F. Rajewsky
    • 1
  1. 1.Max-Planck-Institut für Biophysik in Frankfurt am MainDeutschland

Personalised recommendations