Skip to main content
Log in

Degeneration and regeneration in the superior cervical sympathetic ganglion afterLatrodectus venom

  • Published:
Journal of Neurocytology

Summary

The effects of the venom of the spider Latrodectus mactans hasselti on the superior cervical ganglion were studied in the guinea pig. Under anaesthesia the ganglion was bathed in venom solution for 15 min. Shortly afterwards animals salivated profusely and later developed unilateral ptosis and enophthalmos. Postoperative survival times ranged from 15 min to 10 weeks. Electron microscopy showed acute swelling of preganglionic cholinergic nerve terminals, followed by degeneration with separation of synapses. Other ganglionic elements appeared to be undamaged, although after detachment of synapses the dendritic postsynaptic specializations were reduced in number. Recovery was very rapid; axon growth cones were identifiable at 18 h and synapse reformation was well established by 2 weeks. With longer survival times there was progressive restoration of normal morphology such that by 8 weeks regeneration appeared complete. These experiments indicate that the preganglionic cholinergic nerve terminals are selectively affected by Latrodectus venom and have a considerable capacity for appropriate regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Khafaji, F. A. H., Anderson, P. N., Mitchell, J. &Mayor, D. (1983) The permeability of autonomic ganglia to horseradish peroxidase.Journal of Anatomy 137, 675–82.

    Google Scholar 

  • Black, I. B., Chikaraishi, D. M. &Lewis, E. J. (1985) Trans-synaptic increase in RNA coding for tyrosine hydroxylase in a rat sympathetic ganglion.Brain Research 339, 151–3.

    Google Scholar 

  • Bray, G. M. &Aguayo, A. J. (1974) Regeneration of peripheral unmyelinated nerves. Fate of the axonal sprouts which develop after injury.Journal of Anatomy 117, 517–29.

    Google Scholar 

  • Bunge, M. B. (1973) Fine structure of nerve fibers and growth cones of isolated sympathetic neurons in culture.Journal of Cell Biology 56, 713–35.

    Google Scholar 

  • Byrne, G. C. &Pemberton, P. J. (1983) Red-back spider (Latrodectus mactans hasselti) envenomation in a neonate.Medical Journal of Australia 2, 665–6.

    Google Scholar 

  • Chmouliovsky, M., Dunant, Y., Graf, J., Straub, R. W. &Rufener, C. (1972) Inhibition of creatine phosphokinase activity and synaptic transmission by black widow spider venom.Brain Research 44, 289–93.

    Google Scholar 

  • Dail, W. G. &Barton, S. (1983) Structure and organization of mammalian sympathetic ganglia. InAutonomic Ganglia (edited byElfvin, L.-G.), pp. 3–26. New York: John Wiley.

    Google Scholar 

  • Deitch, J. A. &Rubel, E. W. (1984) Afferent influences on brain stem auditory nuclei of the chicken: time course and specificity of dendritic atrophy following deafferentation.Journal of Comparative Neurology 229, 66–79.

    Google Scholar 

  • Duchen, L. W., Gomez, S. &Queiroz, L. S. (1981) The neuromuscular junction of mouse after black widow spider venom.Journal of Physiology 316, 279–91.

    Google Scholar 

  • Dun, N. J. (1983) Peptide hormones and transmission in sympathetic ganglia. InAutonomic Ganglia (edited byElfvin, L.-G.), pp. 345–66. New York: John Wiley.

    Google Scholar 

  • Dyck, P. J. &Hopkins, A. P. (1972) Electron microscopic observations on degeneration and regeneration of unmyelinated nerve fibres.Brain 95, 223–34.

    Google Scholar 

  • Einhorn, V. F. &Hamilton, R. C. (1973) Transmitter release by red back spider venom.Journal of Pharmacy and Pharmacology 25, 824–6.

    Google Scholar 

  • Elfvin, L.-G. (1963a) The ultrastructure of the superior cervical sympathetic ganglion of the cat I. The structure of ganglion cell processes as studied by serial sections.Journal of Ultrastructure Research 8, 403–40.

    Google Scholar 

  • Elfvin, L.-G. (1963b) The ultrastructure of the superior cervical sympathetic ganglion of the cat II. The structure of the preganglionic fibers and the synapses as studied by serial sections.Journal of Ultrastructure Research 8, 441–76.

    Google Scholar 

  • Flecknell, P. A. &Mitchell, M. (1984) Midazolam and fentanyl-fluanisone: assessment of anaesthetic effects in laboratory rodents and rabbits.Laboratory Animals 18, 143–6.

    Google Scholar 

  • Forehand, C. J. (1985) Density of somatic innervation on mammalian autonomic ganglion cells is inversely related to dendritic complexity and preganglionic convergence.Journal of Neuroscience 5, 3403–8.

    Google Scholar 

  • Fritz, L. C., Tzeng, M.-C. &Mauro, A. (1980) Different components of black widow spider venom mediate transmitter release at vertebrate and lobster neuromuscular junctions.Nature 283, 486–7.

    Google Scholar 

  • Frontali, N. (1972) Catecholamine-depleting effect of black widow spider venom on iris nerve fibres. Brain Research37, 146–80.

    Google Scholar 

  • Frontali, N., Ceccarelli, B., Gorio, A., Mauro, A., Siekevitz, P., Tzeng, M.-C. &Hurlbut, W. P. (1976) Purification from black widow spider venom of a protein factor causing the depletion of synaptic vesicles at neuromuscular junction.Journal of Cell Biology 68, 462–79.

    Google Scholar 

  • Gabella, G. (1976)Structure of the Autonomic Nervous System, pp. 3–45. London: Chapman and Hall.

    Google Scholar 

  • Gorio, A. &Mauro, A. (1979) Reversibility and mode of action of black widow spider venom on the vertebrate neuromuscular junction.Journal of General Physiology 73, 245–63.

    Google Scholar 

  • Hamilton, R. C. &Robinson, P. M. (1973) Disappearance of small vesicles from adrenergic nerve endings in the rat vas deferens caused by red back spider venom.Journal of Neurocytology 2, 465–9.

    Google Scholar 

  • Hamori, J., Láng, E. &Simon, L. (1968) Experimental degeneration of the preganglionic fibers in the superior cervical ganglion of the cat. An electron microscope study.Zeitschrift für Zellforschung und mikroskopische Anatomic 90, 37–52.

    Google Scholar 

  • Heuser, J. E. &Reese, T. S. (1973) Evidence of recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction.Journal of Cell Biology 57, 315–44.

    Google Scholar 

  • Hume, R. I. &Purves, D. (1981) Geometry of neonatal neurones and the regulation of synapse elimination.Nature 293, 469–71.

    Google Scholar 

  • Hunt, C. C. &Nelson, P. G. (1965) Structural and functional changes in the frog sympathetic ganglion following cutting of the presynaptic nerve fibres.Journal of Physiology 177, 1–20.

    Google Scholar 

  • Hurlbut, W. P. &Ceccarelli, B. (1979) Use of black widow spider venom to study the release of neurotransmitters. InNeurotoxins: Tools in Neurobiology (edited byCeccarelli, B. &Clementi, F.), pp. 87–115. New York: Raven Press.

    Google Scholar 

  • Maehlen, J. &Nj↠, A. (1982) The effects of electrical stimulation on sprouting after partial denervation of guinea-pig sympathetic ganglion cells.Journal of Physiology 322, 151–66.

    Google Scholar 

  • Maretic, Z. (1978) Epidemiology of envenomation, symptomatology, pathology and treatment. InHandbook of Experimental Pharmacology, Vol. 48,Arthropod Venoms. (edited byBellini, S.), pp. 185–212. Berlin: Springer-Verlag.

    Google Scholar 

  • Maretic, Z. &Jelasic, F. (1953) Uber den Einfluss des toxins der spinneLatrodectus tredecimguttatus auf das nervensystem.Acta tropica 10, 209–24.

    Google Scholar 

  • Matthews, M. R. (1983) The ultrastructure of junctions in the sympathetic ganglia of mammals. InAutonomic Ganglia (edited byElfvin, L.-G.), pp. 27–66. New York: John Wiley.

    Google Scholar 

  • Matthews, M. R. &Nelson, V. H. (1975) Detachment of structurally intact nerve endings from chromatolytic neurones of rat superior cervical ganglia during the depression of synaptic transmission induced by postganglionic axotomy.Journal of Physiology 245, 91–135.

    Google Scholar 

  • McLachlan, E. M. (1974) The formation of synapses in mammalian sympathetic ganglia reinnervated with preganglionic or somatic nerves.Journal of Physiology 237, 217–42.

    Google Scholar 

  • Njå, A. &Purves, D. (1977) Re-innervation of guinea-pig superior cervical ganglia by preganglionic fibres arising from different levels of the spinal cord.Journal of Physiology 272, 633–51.

    Google Scholar 

  • Njå, A. &Purves, D. (1978a) The effects of nerve growth factor and its antiserum on synapses in the superior cervical ganglion of the guinea-pig.Journal of Physiology 277, 53–75.

    Google Scholar 

  • Njå, A. &Purves, D. (1978b) Specificity of initial synaptic contacts made on guinea-pig superior cervical ganglion cells during regeneration of the cervical sympathetic trunk.Journal of Physiology 281, 45–62.

    Google Scholar 

  • Östberg, A. J. C., Raisman, G., Field, P. M., Iverson, L. L. &Zigmond, R. E. (1976) A quantitative comparison of the formation of synapses in the rat superior cervical sympathetic ganglion by its own and foreign nerves.Brain Research 107, 445–70.

    Google Scholar 

  • Purves, D. (1976) Competitive and non-competitive reinnervation of mammalian sympathetic neurons by and foreign fibers.Journal of Physiology 261, 453–75.

    Google Scholar 

  • Queiroz, L. S. &Duchen, L. W. (1982) Effects ofLatrodectus spider venoms on sensory and motor nerve terminals of muscle spindles.Proceedings of the Royal Society of London, Series B 216, 103–10.

    Google Scholar 

  • Quilliam, J. D. &Tamarind, J. P. (1972) Electron microscopy of degenerative changes in decentralized rat superior cervical ganglia.Micron 3, 454–72.

    Google Scholar 

  • Raisman, G., Field, P. M., Östberg, A. J. C., Iversen, L. L. &Zigmond, R. E. (1974) A quantitative ultrastructural and biochemical analysis of the process of reinnervation of the superior cervical ganglion in the adult rat.Brain Research 71, 1–16.

    Google Scholar 

  • Ramsay, D. A. &Matthews, M. R. (1985) Denervationinduced formation of adrenergic synapses in the superior cervical sympathetic ganglion of the rat and the enhancement of this effect by postganglionic axotomy.Neuroscience 16, 997–1026.

    Google Scholar 

  • Rouiller, C. H., Nicolescu, P., Orci, L. &Rufener, C. (1971) The effect of anoxia on the ultrastructure of the superior cervical ganglion of the ratin vitro.Virchoivs Archives (Abteilung B. Zellpathologie) 7, 269–92.

    Google Scholar 

  • Schafer, T., Schwab, M. E. &Thoenen, H. (1983) Increased formation of preganglionic synapses and axons due to a retrograde trans-synaptic action of nerve growth factor in the rat sympathetic nervous system.Journal of Neuroscience 3, 1501–10.

    Google Scholar 

  • Smolen, A. J., Beaston-Wimmer, P., Wright, L. L., Lindley, T. &Cader, C. (1985) Neurotransmitter synthesis, storage, and turnover in neonatally deafferented sympathetic neurons.Developmental Brain Research 23, 211–18.

    Google Scholar 

  • Sugimoto, T. &Gobel, S. (1984) Dendritic changes in the spinal dorsal horn following transection of a peripheral nerve.Brain Research 321, 199–208.

    Google Scholar 

  • Thomas, P. K. (1963) The connective tissue of peripheral nerve: an electron microscope study.Journal of Anatomy 97, 35–44.

    Google Scholar 

  • Tzeng, M.-C. &Siekevitz, P. (1978) The effect of the purified major protein factor (α-latrotoxin) of black widow spider venom on the release of acetylcholine and norepinephrine from mouse cerebral cortex slices.Brain Research 139, 190–6.

    Google Scholar 

  • Voyvodic, J. T. (1987) Development and regulation of dendrites in the rat superior cervical ganglion.Journal of Neuroscience 7, 904–12.

    Google Scholar 

  • Wiener, S. (1961) Red back spider bite in Australia. An analysis of 167 cases.Medical Journal of Australia 2, 44–9.

    Google Scholar 

  • Wiley, R. G., Spencer, C. &Pysh, J. J. (1987) Time course and frequency dependence of synaptic vesicle depletion and recovery in electrically stimulated sympathetic ganglia.Journal of Neurocytology 16, 359–72.

    Google Scholar 

  • Wisniewski, H. M., Ghetti, B. &Horoupian, D. S. (1972) The fate of synaptic membranes of degenerating optic nerve terminals and their role in the mechanism of trans-synaptic changes.Journal of Neurocytology 1, 297–310.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniel, S.E. Degeneration and regeneration in the superior cervical sympathetic ganglion afterLatrodectus venom. J Neurocytol 18, 407–421 (1989). https://doi.org/10.1007/BF01190843

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01190843

Keywords

Navigation