Carotenoid scavenging of radicals

Effect of carotenoid structure and oxygen partial pressure on antioxidative activity
  • Kevin Jørgensen
  • Leif H. Skibsted
Original Paper


Carotenoid scavenging of free radicals has been investigated in peroxidizing methyl esters of unsaturated fatty acids using (i) metmyoglobin as a water-based freeradical initiator in a heterogeneous lipid/water system, and (ii) azo-bis-isobutyronitrile as a free-radical initiator in a homogeneous chloroform solution. For the heterogeneous system, using a combination of electrochemical oxygen depletion measurements, spectrophotometric determination of lipid hydroperoxides and carotenoid degradation, it was demonstrated that each of the four carotenoids astaxanthin,β-carotene, canthaxanthin, and zeaxanthin protects the methyl esters against oxidation. The antioxidative effect increases with increasing carotenoid concentration, increases with decreasing oxygen partial pressure (0.010< pO2 <0.50 atm), and shows little dependence on the structure of the carotenoid. For a homogeneous solution, the effect of the structure of the carotenoid was further investigated, and it was shown that the stability of the four carotenoids in the oxidizing system are different, with the order of decreasing stability being: astaxanthin>canthaxanthin>β-carotene>zeaxanthin. Each of the four carotenoids can suppress lipid oxidation and the degree of suppression of peroxidation of methyl linoleate corresponds to the difference in stability.


Carotenoid Linoleate Astaxanthin Zeaxanthin Methyl Linoleate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Entfernung von freien Radikalen beim Carotenoid. Einfluß der Strukturen des Carotenoids und des Sauerstoffdruckes auf die antioxidative Aktivität


Es wurde die Entfernung von freien Radikalen beim Carotenoid untersucht durch Peroxidation der Methylester der ungesättigten Fettsäuren unter Verwendung von Metmyoglobin in einem heterogenen Lipid/Wasser-System und azo-bis-Isobutyronitril wie ein freier Radikal-Initiator in einer homogenen Chloroform-Lösung. Für das heterogene System, unter Verwendung einer Kombination einer elektrochemischen Messung der Sauerstoffverminderung, der spektrophotometrischen Bestimmung der Lipidhydroperoxide und des Carotenoidabbaues wurde demonstriert, daß jedes der vier Carotenoide, Astaxanthin,β-Carotin, Canthaxanthin und Zeaxanthin, die Methylester gegen Oxidation schützt. Der antioxidative Effekt steigt mit fallendem Sauerstoffdruck (0,010<po2<0.50 atm); weiterhin ist er wenig abhängig von der Struktur des Carotenoids. Für das homogene System wurde der Einfluß der Struktur des Carotenoids weiterhin untersucht; und es wurde demonstriert, daß die Stabilität der vier Carotenoide in dem oxidierenden System verschieden ist, und zwar mit fallender Stabilität in der Reihe: Astaxanthin>Canthaxanthin>β-Carotin >Zeaxanthin. Jedes der vier Carotenoide kann die Lipidoxidation unterdrücken, der Grad der Unterdrükkung der Peroxidation des Methyllinolats entspricht dem Unterschied in der Stabilität.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Niki E (1987) Chem Phys Lipids 44:227PubMedGoogle Scholar
  2. 2.
    Krinsky NI (1979) Pure Appl Chem 51:649Google Scholar
  3. 3.
    Mathews-Roth MM (1981) In: Bauernfeind JC (ed) Carotenoids as colorants and vitamin A precursors, chap 8, Academic Press Inc.Google Scholar
  4. 4.
    Krinsky NI (1989) Free Rad Biol Med 7:617PubMedGoogle Scholar
  5. 5.
    Bradley DG, Min DB (1992) Critic Rev Food Sci Nutr 31:211Google Scholar
  6. 6.
    Andersen HJ, Bertelsen G, Christophersen AG, Ohlen A, Skibsted LH (1990) Z Lebensm Unters Forsch 191:119PubMedGoogle Scholar
  7. 7.
    Peto R, Doll R, Buckley JD, Sporn MB (1981) Nature 290:201PubMedGoogle Scholar
  8. 8.
    Temple NJ, Basu TK (1988) Nutr Res 8:685Google Scholar
  9. 9.
    Ziegler RG (1991) Am J Clin Nutr 53:251SGoogle Scholar
  10. 10.
    Esterbauer H, Striegl G, Puhl H, Oberreither S, Rothenneder M, El-Saadani M, Jürgens G (1989) Ann N Y Acad Sci 570:254PubMedGoogle Scholar
  11. 11.
    Jialal I, Norkus EP, Cristol L, Grundy SM (1991) Biochim Biophys Acta 1086:134PubMedGoogle Scholar
  12. 12.
    Burton GW, Ingold KU (1984) Science 224:569PubMedGoogle Scholar
  13. 13.
    Krinsky NI (dy1991) Am J Clin Nutr 53:238SGoogle Scholar
  14. 14.
    Di Mascio P, Kaiser S, Sies H (1989) Arch Biochem Biophys 274:532PubMedGoogle Scholar
  15. 15.
    Terao J (1989) Lipids 24:659PubMedGoogle Scholar
  16. 16.
    Miki W (1991) Pure Appl Chem 63:141Google Scholar
  17. 17.
    Zhang L-X, Cooney RV, Bertram JS (1991) Carcinogenesis 12:2109PubMedGoogle Scholar
  18. 18.
    Lim BP, Nagao A, Terao J, Tanaka K, Suzuki T, Takama K (1992) Biochim Biophys Acta 1126:178PubMedGoogle Scholar
  19. 19.
    Mikkelsen A, Sosniecki L, Skibsted LH (1992) Z Lebensm Unters Forsch 195:228Google Scholar
  20. 20.
    Stewart JM (1990) Biochem Cell Biol 68:1096PubMedGoogle Scholar
  21. 21.
    Belitz H-D, Grosch W (1987) Food chemistry. Springer, p 158Google Scholar
  22. 22.
    Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987) Science 235:1043PubMedGoogle Scholar
  23. 23.
    Vile GF, Winterbourn CC (1988) FEBS Lett 238:353PubMedGoogle Scholar
  24. 24.
    Palozza P, Krinsky NI (1991) Free Rad Biol Med 11:407PubMedGoogle Scholar
  25. 25.
    Kennedy TA, Liebler DC (1992) J Biol Chem 267:4658PubMedGoogle Scholar
  26. 26.
    Kennedy TA, Liebler DC (1991) Chem Res Toxicol 4:290PubMedGoogle Scholar
  27. 27.
    Handelman GJ, Kuijk FJGM van, Chatterjee A, Krinsky NI (1991) Free Rad Biol Med 10:427PubMedGoogle Scholar
  28. 28.
    Yamauchi R, Mikyake N, Kato K (1992) Free Rad Res Commun Volume of abstracts: VI Biennial Meeting Free radicals from basic science to medicine. Al1.10Google Scholar
  29. 29.
    Monaghan BR, Schmitt FO (1932) J Biol Chem 96:387Google Scholar
  30. 30.
    Saran M, Michel C, Bors W (1980) In: Bannister JV, Hill HOA (eds) Chemical and biochemical aspects of Superoxide and superoxide dismutase. Elsevier/North-Holland, New York, p 38Google Scholar
  31. 31.
    Bors W, Saran M, Michel C (1982) Int J Radiat Biol 41:493Google Scholar
  32. 32.
    Bors W, Michel C, Saran M (1984) Biochim Biophys Acta 796:312Google Scholar
  33. 33.
    Milon A, Wolff G, Ourisson G, Nakatani Y (1986) Helv Chim Acta 69:12Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Kevin Jørgensen
    • 1
  • Leif H. Skibsted
    • 1
  1. 1.RVAU Centre for Food Research and Department of Dairy and Food ScienceRoyal Veterinary and Agricultural UniversityFrederiksberg CDenmark

Personalised recommendations