Skip to main content
Log in

Photodynamic action and bacterial protein synthesis

  • Published:
Biophysik Aims and scope Submit manuscript

Summary

Photodynamic treatment of bacterial cells with thiopyronin and psoralen inhibits protein synthesis. Transfer RNA isolated from thiopyronin- and psoralen-treated cells is inactive in cell-free protein synthesis. Both the sensitizers inactivate transfer RNA to about 60 to 70%. Ribosomes isolated from thiopyronin-sensitized cells lose 45% of their activity, whereas under the influence of psoralen only 20% inactivation is observed. The enzyme fraction is not damaged in psoralen-treated bacteria, but thiopyronin inactivates this fraction as well. In vivo experiments indicate that psoralen does not react with the protein components of the cell. The mechanism of these inactivations is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chandra, P., Wacker, A.: Photodynamic effects on the template activity of nucleic acids. Z. Naturforsch.21b, 663 (1966).

    Google Scholar 

  2. Cramer, F., Erdmann, V. A.: Amount of adenine and uracil base pairs inE. coli 23s, 16s and 5s rRNA. Nature (Lond.)218, 92 (1968).

    Google Scholar 

  3. — — Von der Haar, F., Schlimme, E.: Structure and reactivity of tRNA. J. Cell Physiol. Suppl. (1)74, 163 (1969).

    Google Scholar 

  4. Furano, A. V., Bradley, D. F., Childers, L. G.: Biochemistry and the confirmation of the RNA in ribosomes: Dye stacking studies. Biochemistry5, 3044 (1966).

    PubMed  Google Scholar 

  5. Krauch, C. H., Krämer, D., Wacker, A.: Zum Wirkungsmechanismus photodynamischer Furocoumarine. Photochem. Photobiol.6, 341 (1967).

    PubMed  Google Scholar 

  6. Lowry, O. H., Rosenbrough, N. J., Farr, R. J., Randall, R. J.: Protein measurement with Folin phenol reagent. J. biol. Chem.193, 265 (1951).

    PubMed  Google Scholar 

  7. Mans, J., Novelli, G. D.: A convenient, rapid and sensitive method for measuring incorporation of radioactive amino acids into proteins. Biochim. biophys. Res. Commun.3, 540 (1960).

    Google Scholar 

  8. Morgans, R. S., Rhoads, D. G.: Confirmation of RNA in ribosomes. Biochim. biophys. Acta (Amst.)102, 311 (1965).

    Google Scholar 

  9. Nirenberg, M. W., Matthaei, J. H.: The dependence of cell-free protein synthesis inE. coli upon naturally occuring or synthetic polyribonucleotides. Proc. nat. Acad. Sci. (Wash.)47, 1588 (1961).

    Google Scholar 

  10. Wacker, A., Chandra, P.: Neuere photodynamische Reaktionen und ihre molekularbiologischen Aspekte. Stud, biophysica3, 239 (1967).

    Google Scholar 

  11. —, Dellweg, H., Träger, L., Kornhauser, A., Lodemann, E., Türck, G., Selzer, R., Chandra, P., Ishimoto, M.: Organic photochemistry of nucleic acids. Photochem. Photobiol.3, 369 (1964).

    Google Scholar 

  12. —, Ebert, M., Kolm, H.: Über den Stoffwechsel der p-Aminobenzoesäure, Folsäure und Aminofolsäure beiEnterococcus. Z. Naturforsch.13a, 151 (1958).

    Google Scholar 

  13. - Türck, G.: Unpublished results.

  14. Zubay, G.: Isolation and fractionation of soluble RNA. J. molec. Biol.4, 347(1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandra, P., Wacker, A. Photodynamic action and bacterial protein synthesis. Biophysik 7, 212–216 (1971). https://doi.org/10.1007/BF01190727

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01190727

Keywords

Navigation